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Abstract: Walter Elsasser (1904-1991), an eminent quantum physicist and geophysicist, was also active in theoretical biol-
ogy over a 35-year period from the early 1950s to the late 1980s. Although increasingly estranged from the biological estab-
lishment during the last fifteen years of his life, Elsasser’s central concern with complexity has resulted in a revival of interest
in his theories over the last decade, particularly among those who see biology from a systems holist rather than a molecular
reductionist viewpoint. This article reviews the development of Elsasser’s thought from his early opposition to genetic deter-
minism, through the radical epistemology of his middle period, to his later more broadly philosophical ideas. After a sum-
mary of existing responses to Elsasser in the literature, a fresh critique and assessment of his work is presented, with particu-
lar attention to the implications for systems biology. It is concluded that although Elsasser drew some conclusions from his
epistemology that are not justifiable in the light of subsequent research, his insistence on the existence of biotonic phenomena
in biology, irreducible (either at present, or in principle) to physics, is correct. Ironically, the most significant biotonic princi-
ple is one which Elsasser largely ignored in his own work, that of Natural Selection.

INTRODUCTION

Walter Elsasser (1904-1991) was part of the generation of
physicists who turned to biology after the Second World War
but, unlike contemporaries such as Maurice Wilkins, Francis
Crick and Max Delbriick, who dedicated themselves exclu-
sively to their new field, or those physicists who made only
occasional contributions to biology [1-4], Elsasser pursued
physics and biology with equal vigour. Although he made a
crucial contribution to early quantum mechanics [5] and sev-
eral major discoveries in geophysics, he eventually came to
regard his theoretical biology as his most significant work [6-
8].

After a period of neglect, Elsasser is once again receiving
attention from experimentalists [8-15] and theoretical/systems
biologists [16-21]. Passing mention is also found among
cladists [22], ecologists [23-26], semioticists [27, 28] and arti-
ficial life researchers [29, 30]. In parallel with this revival of
interest, Elsasser has also become a posthumous inspiration to
opponents of current research directions in molecular biology
[31-33], as well as in less mainstream areas such as so-called
‘Intelligent Design’.

During his lifetime, Elsasser’s ideas were the subject of
considerable comment [4, 34-44], but very little in the way of
detailed critique, with one exception [45]. The revival of inter-
est in his work has produced several short introductions [8, 17,
20] but no full reassessment of his ideas. This article attempts
to fill this gap, with the emphasis on his relevance to systems
biology, a field which Elsasser [46] foresaw. The initial expo-
sition of Elsasser’s work will be delivered without immediate
criticism, followed by an assessment of Elsasser’s influence
on current thinking in the various fields in which he is cited.
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Then some comments in the literature will be discussed, and a
new comprehensive critique presented. The final section is a
reassessment of Elsasser’s contribution to modern biology.

EXPOSITION OF ELSASSER’S BIOLOGICAL THEO-
RIES

The earlier stages of Elsasser’s biological thought were
dominated by his development of Bohr’s notion of “general-
ized complementarity” [47, 48], an extension of the concept of
complementarity in the quantum world - the dual parti-
cle/wave nature of matter, leading for instance to the inability
to know precisely a particle’s position and velocity - to the
macroscopic level. For instance, Bohr [1, 3] argued that a
complete set of measurements on a cell or organism carried
right down to the quantum level would result in the death of
that entity. If such a set of complete measurements were tech-
nically feasible - in quantum mechanics, the hypothetical in-
strument required is picturesquely referred to as a “Heisenberg
microscope” [49] - the investigator would have a full descrip-
tion of the state of the organism, but would be unable to ex-
tend that description into a series of such over time. Con-
versely, an investigator planning any time series of measure-
ments on a complex biological entity would have to forego
any hope that such measurements could ever be complete right
down to the quantum level. It is thus impossible to know both
the complete state and complete trajectory of an organism,
since these are complementary descriptions.

In parallel with this, Elsasser also carried out some detailed
consideration of the nature of automata, comparing the behav-
iour of electronic and mechanical feedback devices to cellular
and physiological processes according to the principles of two
theories that were new at that time: cybernetics and the con-
cept of self-reproducing machines [50, 51]. On this basis, El-
sasser concluded that there were a large number of biological
processes that could reasonably be understood as cybernetic
automata, leading to an essentially mechanistic interpretation
of biology, provided that one understands that generalized
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complementarity prevents the determinism within such a sys-
tem from descending to the sub-atomic level [49]. However, a
crucial exception was made in the case of the transmission of
hereditary information, where Elsasser felt that geneticists had
overstated the extent to which developmental programming of
the embryo was determined by the germ cells [52].

Elsasser was influenced in this by ideas then current in
developmental biology, still at that time rather a separate sci-
ence to genetics, and based his discussions on the classic em-
bryological dichotomy between preformation and epigenesis.
A hypothetical embryo with complete genetic determination
of its developmental program would, Elsasser argued, be
equivalent to a preformed system, in that all necessary infor-
mation would be contained in the fertilized zygote. Rather
than the homunculus of 18th century embryologists, this up-
dated notion of preformed content would be encoded in the
genome. By contrast, a hypothetical epigenetic embryo would
not contain all its developmental information within the fertil-
ised germ cell, and could not be considered as an automaton.
Both preformed and epigenetic embryos might look similar,
have similar genomes, and indeed perform similar morphoge-
netic movements during development. The question of the
preformed or epigenetic nature of the developmental processes
arising in such embryos would hinge on whether or not the
processes were entirely encoded in the genome.

Nevertheless, Elsasser emphasised that, apart from such
concerns about information storage, he could see no funda-
mental difference why an organism could not be considered an
automaton in the sense described by contemporary cybernetic
theory [52]. Throughout his career, Elsasser explicitly rejected
any neo-vitalism [6, 7, 20, 46, 49, 52-54, 89]. Rather, he pos-
ited that that new “biotonic” principles, compatible with, but
not deducible from, quantum mechanics [55], were required to
explain the development of an organism in the absence of the
complete information storage he regarded as necessary for a
truly mechanistic embryology to be valid. It is therefore ap-
propriate to consider Elsasser’s early stance as info-scepticism:
a generalised scepticism about deterministic description of any
complex system to the quantum level, coupled with a specific
scepticism concerning genetic determination or programming
of developmental processes.

A further crucial concept from his early work is “the prin-
ciple of finite classes” [52, 55], which he frequently illustrated
using a state-space or phase-space model [56]. If one repre-
sents each theoretical configuration of a complex biological
object, for instance a protein, by a point in an abstract state
space, then the state space thus constituted is immensely large,
and the fraction of that theoretical state space actually occu-
pied in the real world is vanishingly small. Proteins are there-
fore entities belonging to finite or inhomogeneous classes.
Within a finite class, even if the average conformation could
be calculated for all its members in the real world (usually a
practical impossibility), there is no guarantee that it will be the
same as the average point in the total theoretical phase space.
By contrast, a simple gas such as nitrogen has, by virtue of the
simplicity of each nitrogen molecule, a limited number of con-
formational possibilities. The theoretical phase space of nitro-
gen gas is therefore small and will be fully occupied in the real
world. Even with a very small sample of nitrogen gas, the av-
erage molecular conformation will be the same as in an infi-
nitely large one. Simple gases, and indeed most subjects of
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study in the physico-chemical laboratory, can therefore be
considered to be members of infinite or homogeneous classes.
Unlike the world of the physico-chemical laboratory, the bio-
logical world constitutes a “finite universe of discourse”,
meaning a universe where all classes are finite [57].

All biologists are aware of the extreme molecular com-
plexity of biological substances relative to those typically
studied by an experimental physicist. Therefore, the concept
of, for example, ultra-sparse protein phase space might simply
be regarded as a formal way of describing what is trivially
true. However, Elsasser identified extremely non-trivial impli-
cations for the theory connecting quantum mechanics (QM) to
the Newtonian universe in which the biological sciences typi-
cally operate. This theory, mathematically formulated by John
von Neumann in the early 1930s and published in his book
Grundlagen der Quantenmechanik [58], henceforth referred to
as the Grundlagen proof, demonstrates that although quantum
indeterminacy rules the world of sub-atomic particles, the sta-
tistical averages of such indeterminacies are regular enough
for determinism to apply to levels above the quantum. The
indeterminate world of QM and the Newtonian deterministic
universe are therefore not only compatible, but the latter is a
necessary consequence of statistical behaviour within the for-
mer.

Based on his concept of finite classes, Elsasser made the
radical proposal that this Grundlagen proof included an im-
plicit assumption about the homogeneity of any system in
which the quantum indeterminacy averages out to Newtonian
determinacy. In a substance with a small theoretical conforma-
tional space, such as the nitrogen gas discussed above, the
averaging of quantum indeterminacy is easily achieved be-
cause nitrogen belongs to an infinite class and its theoretical
phase space is fully occupied. There is therefore no reason to
believe that nitrogen gas, even in a minuscule sample, would
ever behave indeterministically. However, for immensely
large conformational spaces such as those of proteins and
larger biological objects, the averaging required for the Grund-
lagen proof to apply, would never occur. This was initially an
operational argument against the practicality of reducing biol-
ogy to physics [52]. However, it later developed into a more
direct attack on mechanism within highly complex systems
insofar as Elsasser [56, 59-61] gradually began to imply that it
meant that proteins and other large organic molecules cannot
be expected to behave in the same deterministic way that one
would expect of substances of simpler composition [56]. This
argument applies equally to any complex system but few non-
organic systems would be complex enough for it to become
effective [62].

In other words, Elsasser saw the Grundlagen proof of mac-
roscopic determinism as applying to the world normally in-
habited by the physicist but ceasing to be reliable in complex
biological systems. These are therefore governed by a “non-
Gibbsian statistical mechanics” [56], resulting from “non-
Neumannian axiomatics” [54]. Consequently, “an organism is
a system that is physically indeterminate” (Elsasser’s italics)
[53, 61]. Biology is therefore not based on physics and chem-
istry, and its laws are not deducible, “neither derived nor dis-
proved”, from those of physics and chemistry, but rather phys-
ics and chemistry are narrower fields of study confined to rela-
tively homogeneous substances belonging to infinite classes.
These substances are homogeneous by selection [54] in that
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the experiments of physics and chemistry are usually per-
formed on purified materials, often at controlled temperatures
and pressures. These considerations led Elsasser to a redefini-
tion of his biotonic principle from his earlier work, and also to
some successive name changes: from “biotonic” to “epige-
netic” [53], and then later from “epigenetic” to “organismic”
[63]. Whereas before, biotonicity pertained to information
transmission, an extra principle required to explain the non-
automaton nature of the organism with respect to information
storage, it had now come to define a property of matter such
that: “We call a property of a class organismic if it exists in a
finite universe of discourse but becomes lost when one goes to
a corresponding infinite universe” [56], and therefore “organ-
isms appear as primary forms of matter governed by laws
which cannot be established by observations of anything sim-
pler than the organisms themselves” (Elsasser’s italics) [53].
Under such circumstances, biology becomes a purely induc-
tive science [59, 46], and one in which the study of molecular
mechanisms is relegated in importance behind the study of
whole systems, the study of the “order above inhomogeneity”
[60] or “variostability” [62]. These ideas are very similar to
those of self-organization within chaotic systems, contempo-
raneously developed within the computer sciences [64]. El-
sasser was the first to present self-organization as a wide-
spread empirical fact based purely on consideration of the
nature of biological material.

Elsasser was therefore able to reverse standard scientific
logic and state two “conditions for the /lack of adequate predic-
tion” (italics added) [54]: 1) the calculation of all class aver-
ages must be devoid of operational meaning and 2) the micro-
states must not average out, i.e. local homogeneity must not
occur, the entities must be “radically inhomogeneous at all
levels of their organization”. If either of these requirements is
broken, von Neumann’s Grundlagen proof becomes valid and
the system collapses into a mechanistic mode. The second
requirement, when broken, would create locally mechanistic
areas within an organism, leading to a “biological process as
an inextricable mixture of mechanisms with individualities”
[62].

To maintain this heterogeneity at the micro-level, Elsasser
introduced the concept of ergodizers [55]. An ergodic process
is one in which a system at, or near, thermodynamic equilib-
rium passes through all its possible structural conformations
(referred to by physicists as Boltzmann complexions [53]), in
other words a process that is not confined to a restricted region
of phase space. These ergodizers were hypothesized to be “de-
sign features” connecting the microscopic and macroscopic
worlds in complex systems, that “subserve the appearance of
biotonic regularities” [55]. In its original formulation, metabo-
lism was taken to be “the prime dynamical instrument of er-
godization”, but Elsasser soon retracted this view, replacing it
with a more difficult but preciser definition: “ergodization is
based on geometrically widespread collective interactions with
comparatively weaker energies [than chemically specific in-
teractions]” [53]. Elsasser required ergodizers to exist in order
to explain why organisms are so highly heterogeneous at all
levels. Ergodization is undoubtedly one of the most difficult of
Elsasser’s concepts, and never mentioned in modern reviews
of his work.

Just as Elsasser came to replace the notion that biology can
be reduced to physics — which he terms “logical reductionism”
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[53] - with the concept of physics as a limiting case concerned
with near-homogeneous infinite classes, so is the theory of
logical reductionism itself posited to be a limiting case of a
wider theory of logical complexity [54]. This can be under-
stood as meaning that because there are very few absolute
binary yes/no answers to biological questions, there is little
hope of splitting larger biological problems down into smaller
sub-problems that can be solved in isolation and later re-
assembled into a view of the whole, the so-called “Cartesian
Method”. Just how far Elsasser had come in his rejection of
causation in complex systems can be seen by his introduction
of the concept of “creative agency” in the formation of “or-
dered patterns” [57, 60]. Elsasser stressed that the notion of
creativity was really just a metaphorical one, especially noth-
ing Bergsonian or vitalistic, but actually a kind of unanswer-
able question in a Wittgensteinian sense [65].

Such ideas were to come to the forefront in Elsasser’s later
work, in which he began to develop a wider and more gener-
ally philosophical framework, summarized in terms of four
principles: 1) ordered heterogeneity, 2) creative selection, 3)
holistic memory and 4) operative symbolism [7, 66]. The
principle of ordered heterogeneity is simply a reworking of the
principle of finite classes, but de-emphasizing the importance
of non-Neumannian axiomatics and the conclusions drawn
from these [67]. The principle of creative selection is quite
close to the metaphorical notion of “choice” that Bohr [1] used
to describe the indeterministic transitions of quantum mechan-
ics, expressible only in terms of probabilities. As always, El-
sasser squashed any hint of vitalism: “creativity is just a slo-
gan” [66]. The complexity of biological processes means that
it is never the case that all the causal chains leading to an event
can be traced. Elsasser therefore defines creativity as the for-
mation of ordered patterns under such circumstances [60]. In
his earlier work, Elsasser’s info-scepticism took the form of
denial that the genome was capable of governing embryonic
development. By his final period, he admitted that DNA is an
important storage mechanism (although still restricting it to
“chemical morphogenesis” and denying it a role in anatomical
specification of the embryo [46]), but also postulated a non-
stored “holistic memory”. These two elements were proposed
to supplement each other in the control of development and
other aspects of the phenotype [7]. The role of the mechanistic
gene is proposed to be as “a releaser of creative selection” [66]
a sort of trigger that somehow channels the complex processes
he defined as creativity, engaging cellular holistic memory in
appropriate directions. This is what is referred to as the princi-
ple of operative symbolism, the gene being a physical “sym-
bol” for a larger creative process working on holistic memory.
“Symbol” was defined by Elsasser as “an incomplete mes-
sage” [7].

As well as introducing this new expanded theoretical
framework, Elsasser also attempted to develop some rather
less successful direct lines of attack on mechanism at an em-
pirical level, for instance [68, 69] proposing that mutation will
gradually increase informational entropy within a genome, in
the manner of Muller’s ratchet [70]. Elsasser then went on to
argue that increase in genomic entropy would, if one assumes
that the genome is the primary controller of the phenotype,
result in a corresponding increase in morphological entropy —
a kind of phenotypic spread over time. Since such phenotypic
change does not appear to occur in the fossil record of any
well-studied species, he therefore concluded that the causal
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connection between the genome and phenotype is false. This
will be dealt with further below.

It is notable that Elsasser at this time in his life expressed
his resolve not to be deflected from stating his case through
fear of a bad reception from the scientific establishment, as
apparently he had been up until about 1975 [6]. Certainly his
later work contains more direct philosophical argument about
the ultimate origins of mechanistic modes of thought in biol-
ogy, following the trail back as far as Descartes [46, 7]. For
Elsasser, the success of Cartesianism and its mechanis-
tic/reductionistic successors had resulted in a mindset of
“mechanistic projection” among scientists, the false attribution
of mechanical properties to living things, analogous to the
“animistic projection”, the false attribution of human proper-
ties to inanimate objects. The net result has been the “dog-
matic slumber of reductionist biology”, the “mechanistic
overgrowth that has been the bane of biologists for a long,
long time” [7]. Against this he posited that his theory was in
fact a structural one [46, 71, 66], in the sense of one definition
of “structuralism” as that of explanations that do not use re-
duction, i.e. a structural theory explains or describes some-
thing without recourse to any other underlying theory or disci-
pline [72].

ELSASSER’S INFLUENCE ON OTHERS

Much of Elsasser’s influence on current theoretical biology
is through the work of Robert Rosen, who might be classed as
a friendly critic insofar as he promoted the value of Elsasser’s
work but doubted why the principle of finite classes should
imply anything about causality [73]. Rosen pointed out that if
Elsasser’s interpretation is correct, the implications extend far
wider than biology. If physics is a narrow area confined to the
homogeneous, then the principle of finite classes has rather
profound conclusions for physics, possibly rather more pro-
found than the implication that biology is irreducibly complex.
Rather, Rosen felt that there was a need to find some reduc-
tionist schema that was not couched in terms of physics [74].
Among Rosen’s followers, Baianu [75] and colleagues [21]
claim that living systems are intractable in terms of automata,
and they use Elsasser’s concept of heterogeneous classes as
part of their argument that they can construct various network
topologies, consistent with biological networks, in such a
mathematical form as can be demonstrated not to be equiva-
lent to a Turing machine. Baianu [75] also strongly criticises
complex systems theory in biology as being just complicated
mechanistic model development focussing on digital computa-
tion.

Among those who cite Elsasser as part of a criticism of
current directions in biological research funding, Mae-Wan
Ho [33] made particular use of Elsasser’s concept of variosta-
bility as an argument against the Human Genome Project
(HGP). A similar but wider line was taken by Strohman [31,
32] opposing the entire gamut of modern research funding in
molecular biology. Strohmann felt that the concepts of the
later period Elsasser (complexity, choice, holistic memory) as
well as chaos and informational redundancy were more appro-
priate examples of what should be funded. Elsasser’s com-
plaint that accumulation of sequence information does not
“deepen our understanding of the nature of organic life” [7],
certainly seems to be a comment against such efforts as the
HGP. However, Elsasser’s views on this subject were some-
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times contradictory. Whereas in his early period he spoke of
“the failure of quantum biophysics” [49], and later looked
forward to “a future, more scientific biology” [60], rather than
that produced by those who are “making biology resemble too
much chemistry” [7], at other times he was prepared to con-
cede that molecular biologists had made some impressive
achievements [62].

Elsasser’s theories have found their main empirical expres-
sion in the work of Harry Rubin [9-11, 14, 15], who has fo-
cussed on the existence of what have elsewhere been referred
to as “community effects” [76]. Rubin interprets this in terms
of Elsasser’s concept of variostability, as well as Paul Weiss’s
“macrodeterminism” [10]. However, there are also possible
reductionist explanations (or at least avenues of investigation)
of these events. For instance Monk [77] and Furusawa and
Kaneko [78] make it clear what a mechanism might be for the
community effect in Xenopus development [76], and in fact a
molecular basis has been partly elucidated [79].

PUBLISHED CRITICISMS OF ELSASSER’S WORK

Francis Crick [35] and Jacob Bronowski [39] both criti-
cised Elsasser’s early work, specifically his first book [52] as
an example of neo-vitalism, despite Elsasser’s consistent deni-
als of this charge. Crick’s criticism of Elsasser’s info-
scepticism is fairly strong: “a beautiful example of the confu-
sion that can be brought about by ignorance”, obviously feel-
ing that Elsasser had not taken account of the contemporary
developments in molecular biology in the early 1950s (the
book although published in 1958 was written around 1955 [6])
resulting in a work “clearly conceived in an earlier era” [35]
Crick admitted that the question of how DNA programs de-
velopment is (or was, in 1966) largely unresolved, but be-
lieved that the mechanist viewpoint is the appropriate applica-
tion of Occam’s Razor. As well as challenging info-
scepticism, Crick also expressed doubts about the conse-
quences of the principle of finite classes, seeing this as being
more likely to lead to “chance effects” rather than being the
source of new biotonic properties [35].

Equally as negative as Crick was Jacques Monod who
described Elsasser’s ideas as “oddly lacking in strictness and
solidity” [41]. Elsasser later identified Monod as most closely
representing the view he wished to oppose [7]. Interestingly,
one passage gives the strong impression that Elsasser had not
fully grasped Monod’s point concerning the action of natural
selection. This will be dealt with further in the critique section
below.

Robert Ackermann [36] questioned Elsasser’s view that
biological classes are pervasively finite, finding infinite
classes, for instance, in classical genetics where mutant or
inbred strains can be considered homogeneous in many, or
even all, relevant respects. One could say, if a class is homo-
geneous with regard to the experiment under consideration,
then ceferis paribus (the assumption that all other things are
equal with regard to the experimental conditions) is invoked.
For instance, an inbred strain can, even in a sexually reproduc-
ing organism, produce a degree of homogeneity in the genome
not normally found in a natural setting. However, Elsasser was
always quite willing to concede that it is possible to produce
classes that are homogeneous by selection, for instance in the
chemistry laboratory. The inbred strain of the geneticist is
merely a biological example of such. A slightly different at-
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tack on the principle of finite classes was carried out by Kari
Lagerspetz [37] who gave the example that rocks are always
individual and therefore also a finite class. This has not im-
peded the reduction of geology to chemistry. Elsasser [62]
acknowledged that geological classes can be finite, but denied
that complexity was pervasive in mineral mixtures to the same
degree as in organic substances.

Ackermann and Nils Roll-Hansen [38] also made the in-
teresting point that an organismic attitude like Elsasser’s is
justifiable only if it could be made to fit any underlying phys-
ics. For the reductionist, if the physics changes, the reductional
chain is broken and the biology will need to be re-reduced to
the new physics. Conversely, the production of a new physics
may allow the reduction of biological phenomena previously
regarded as irreducible. One is therefore bound to acknowl-
edge that the denial of reducibility in principle, rather than an
admission of its current deficiency in practice, tacitly assumes
that current physics is completely correct. Elsasser did seem to
be of this opinion, following the line that the Copenhagen In-
terpretation had survived fifty or more years of attempts to
falsify it [46, 66], a position shared by many [5], but which
Ackermann believes will sooner or later be undermined. Ack-
ermann also pointed out that indeterminacy does not necessar-
ily preclude mechanism, as for instance seems to occur in mu-
tation or possibly meiosis (in the sense of a random choice of
crossover position [36]). For example, a coin tossing machine
can be understood in a purely mechanical way, as can a rou-
lette wheel or, at a slightly more sophisticated level, a rand()
function in computer programming. Once the nature of the
random generator is understood, the randomness may disap-
pear and a more truly deterministic picture appear, but absence
of full knowledge of the random generation device does not
entail an abandonment of mechanistic explanation of the sys-
tem in which it is situated.

The longest critique of Elsasser in the literature is by Stuart
Kauffman [45], whose first point concerned the variostability
argument from which Elsasser postulated an absence of any
correspondence between the microstates and macrostates of a
complex system. Kauffman pointed out that if one can transi-
tion at low energy between two adjacent microstates, and
these microstates although adjacent in the notional phase
space of the microstate variables, do not correspond to macro-
states which are adjacent in the corresponding macrostate
phase space, then there is no reason to believe that order
would arise above heterogeneity. On the contrary, the more
likely outcome of such non-proximity in mappings between
micro- and macro-phase spaces would be that disorder would
arise above order, the contrary situation to that hypothesized
by Elsasser. However, this argument seems to rest on a neces-
sary connection between those micro- and macro-phase
spaces. Elsasser argues that there is no reason to assume any
such connection, so Kauffman’s argument in this respect
probably becomes irrelevant.

Kauffman’s second criticism was that part of Elsasser’s
finite class argument is a non sequitur [45]. Kauffman gave
the following thought experiment: if there were only three
oxygen molecules in the universe, they would constitute a
finite class, since although the number of potential conforma-
tional states of a simple gas is very limited and its phase space
is correspondingly tiny, three molecules is not enough to fill it.
In this thought experiment universe, oxygen is a finite class in
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the way that Elsasser describes protein molecules to be in the
real universe. Despite this, one could use still QM to deduce a
multitude of predictions concerning oxygen, for instance its
spectral lines. One could neither falsify nor verify these pre-
dictions since there are only three molecules. However, any
regularity that did occur would still be predictable by QM.
David Hull [80] made a similar point that events that are
unique are not the same as events that are one of a kind. No
rules, and therefore no science, could apply to the former,
whereas the latter are perfectly addressable scientifically (al-
though perhaps in a strictly post hoc fashion).

Kauffman concluded that Elsasser was arguing against
what Daniel Dennett [81] later called “greedy reductionism” —
the tendency to attempt to reduce a science below the level at
which such reduction is useful - after making the false impli-
cation that biologists need to be greedy reductionists in order
to be mechanists. Kauffman then alluded to “reasonably de-
terministic class averages, such as an enzyme’s activity as a
function of the fraction of precursor and product pools in ac-
ceptable microstates”, as an example of what would be con-
sidered as an adequate mechanistic description of a biological
function at an appropriate level of reduction. If one knows
this, one can meaningfully claim to understand the mechanism
of action of the enzyme. However, would such an understand-
ing, good enough for 1972, be regarded as a genuine mecha-
nistic understanding today? The modern biochemist would
require to know the sequence and structure of the enzyme and
to know how the changes in activity corresponded to occupa-
tion of active sites, shifts in allosteric interactions and so on.
As we push the question of how things work, we move inexo-
rable down towards the level of QM. This is not greedy reduc-
tionism, merely a healthy appetite.

Hull [80] expressed some reservations concerning the im-
portance of generalized complementarity, pointing out that it
is quite possible to gain lots of information from an organism
without killing it. A similar argument is found in Markowitz
[43]. Turning to Elsasser’s own work, Hull doubted that there
are quite homogeneous classes in physics, since there are iso-
topes, chiral isomers and so on, even at the atomic level. Simi-
larly, Markowitz [40] shows that superconductors constitute
an example of finite classes. Really homogeneous classes are
only found at the sub-atomic level. Hull concluded that El-
sasser is not merely excluding organisms from reduction to
QM, but also objects such as motor cars, and that Elsasser
must actually be saying that the only thing that can be reduced
to QM is QM itself, or that really there is no science except
QM. Hull pointed out that astronomy is a very exact science
that studies extremely complex heavenly bodies but does not
require all their complexity to be known. Likewise, classical
physics is just about mass, motion, energy and so on, and not
about colour, shape or chemical composition. Therefore, biol-
ogy need not refer to every detail of its subject matter. This
line of argument, however, could also be construed in support
of Elsasser’s rather than against it. Hull’s insistence that as-
tronomy and classical physics do not need to be reduced to
QM to be satisfactorily applicable within their appropriate
areas is very similar to Elsasser’s arguments for biotonic/or-
ganismic emphasis in biology. Both argued that reductionism
to QM was inappropriate; Elsasser merely added that for biol-
ogy, it was also likely to be impossible. Hull also found El-
sasser’s whole notion of classes in biology rather essentialist
in that, classes being defined by a set of properties for each
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class member, it does not seem to take into account the possi-
bility that the class will, or indeed can, evolve.

CRITIQUE OF ELSASSER

Despite the clarity of Elsasser’s writing, it is evident that
many critics were unable to go beyond a simple intuitive feel-
ing that Elsasser was wrong, outdated or irrelevant. Even the
handful of critics who were able or inclined to explore El-
sasser’s ideas more deeply could often score only glancing
blows. It is hoped that the following will go more directly to-
wards eliminating those parts of Elsasser’s theory that are un-
tenable, thus revealing the useful parts in more detail.

A. Confusion of Determinism, Mechanism and Reduction-
ism

It is easy to become mired in definitions of terms such as
vitalism, mechanism and reductionism, differing as they do to
such an extent between writers. This was previously recog-
nised by Hull [80] who goes as far as to suggest that the entire
debate is virtually crippled by such problems. It is clear that
even within the body of Elsasser’s work, a lack of definitional
stability seems to undermine some of his arguments.

For instance, in his early writings, Elsasser acknowledges
the organism as “determinate”, but that this determinism is not
“purely mechanical, it must needs be biological” (Elsasser’s
italics) [49]. One may therefore use explanatory terminology
of the form ‘phenomenon X leads of necessity to phenomenon
Y’, provided one understands that the organism is not to be
seen as nothing but a complex mechanical device. This is a
‘morethanist’ [82] argument against what has been variously
called ‘nothing buttery’ [83, 84] or greedy reductionism [81].
The source of such nothing buttery would appear to be in early
natural philosophers such as Descartes, and more fully in
slightly later successors such as Julian Offray de La Mettrie
(author of L’Homme Machine of 1748), for whom the suc-
cesses of early efforts in the production of clockwork or hy-
draulic devices provided a powerful analogy for the under-
standing of organisms [85]. The modern biologist, while rec-
ognising this analogy, realizes that organisms are of a com-
plexity and subtlety that exceeds even the most impressive
human artefact. The meaning of ‘mechanism’ in modern bio-
logical discourse is therefore more the answer to any question
of the form ‘how does X work?’, and a reply of the form ‘X is
caused by Y and Z acting together in manner A’ would be
referred to as ‘a mechanism for X’, essentially the abstract
cybernetic definition given by Ashby [86]. That mechanism
could be at the evolutionary, cellular or molecular level. The
similarity or dissimilarity of the proposed process to anything
seen in contraptions of human devising would certainly be
interesting, but nevertheless irrelevant to the question of its
status as a mechanism. A salient example of Elsasser’s misus-
age can be found in his representation of Driesch’s embryo
division experiment, in which a 2-cell sea urchin embryo de-
velops into two different embryos after separation of the cells,
as a conclusive experiment against mechanism [7]. Driesch,
unlike Elsasser, went even further and took it as evidence for
vitalism, but modern developmental biologists simply see it as
‘regulative development’, another fascinating mechanism to
be studied. Therefore, Elsasser’s distinction between deter-
minism of a mechanical nature and determinism of a biologi-
cal nature appears at first sight to be rather artificial.
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However, for Elsasser, such a reply would probably consti-
tute fudging the issue, since he regarded a truly mechanistic
explanation as one that was in principle capable of expression
at the quantum level. Nevertheless, in this Elsasser is making
several assumptions about the nature of the automata that so
captivated the early Cartesian biologists. These would likely
have contained many parts of organic origin, made from
wood, animal gut, wool, cotton etc. therefore including many
parts belonging to finite classes, and so under Elsasser’s own
terms be quite irreducible. Elsasser does occasionally imply
that he takes mechanism and reductionism to be synonymous
[7], and also that “physicalism” is synonymous with reduc-
tionism [71]. “A prediction is purely physical only if it is
based on the solution of the differential equations of physics
(quantum mechanics)” [55, italics added]. By this criterion,
very few objects are mechanisms at all, and certainly not the
handcrafted moving dolls that initially inspired the whole ma-
chine-organism analogy. Elsasser can only achieve his refuta-
tion of mechanism in biology by redefining rather narrowly
what a mechanism is, so narrowly in fact that the term be-
comes meaningless even in contexts outside of biology. More
extreme anti-reductionists such as Polanyi have pursued simi-
lar lines of investigation even further, resulting for instance in
the statement that a motor car is also irreducible to physics,
and Hull [80] is of the opinion that Elsasser fails to make a
convincing case why his own argument is correct and Po-
lanyi’s is wrong. If one rejects Polanyi’s argument, as Elsasser
did, it casts into doubt the very definition of mechanism that
Elsasser uses.

When dealing with embryology, Elsasser also conflates
“mechanistic” and “predetermined”, stating that a mechanistic
view of embryogenesis necessarily entails a view of embryos
as predetermined. Again one might appeal to the casual defini-
tion of mechanism used by modern biologists, who recognize
various degrees of regulative and predeterministic processes in
embryogenesis without any qualms about referring to them all
as mechanisms of development (incidentally, the title of one of
the main journals in the field). However, there is also a
stronger argument against Elsasser’s usage. Any automaton
capable of if-then decision gating based on environmental
conditions will not exhibit predetermined behaviour since the
environment is a necessary input to its current state. It is nev-
ertheless entirely mechanistic in a far narrower sense than
used in modern biology, and even potentially in the very nar-
row sense required by Elsasser [87]. It can at least be said that
only if one could entirely predict the changes in the environ-
ment could one also entirely predict the behaviour of the de-
vice. It is interesting in this context that Elsasser changed the
name of his purely biological laws from “biotonic” to “epige-
netic” [53], reflecting his opinion that the preformation-
epigenesis dichotomy was central to his problem. His later
change from “epigenetic” to “organismic” may have reflected
a realization that his use of the term was non-standard [88],
and indeed since the mid-1980s epigenetic has come to have a
rather specialised meaning even within developmental biol-
ogy, referring largely to the process of modification of gene
expression via methylation of DNA.

This name change issue is interesting, since most modern
biologists would see the later “organismic” as pointing to-
wards the organism as a whole. However, it is defined [56] as
referring to any property that only exists in finite classes, and
therefore could apply to an extensive array of levels of bio-
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logical object - one might for instance be led to say that pro-
teins have organismic properties, which although comprehen-
sible to those familiar with Elsasser’s entire ceuvre, may mis-
lead the uninitiated if used casually. Likewise the middle pe-
riod “epigenetic” seems to point rather narrowly towards the
embryo. The earlier “biotonic” could in principle refer to any
level, and is therefore the preferred term in the remainder of
this article. This avoids the confusion that might result from
mixing Elsasser’s definitions of epigenetic and organismic
with those of more recent terminology. For instance, a non-
greedy reductionist could agree that some properties of protein
function may be biotonic, but in the standard terminology they
could hardly be organismic, and only epigenetic in certain
narrow circumstances.

The origin of this confusion seems to originate at some
point in the mid-1960s. In his first book [52], it is clear from
the extensive analysis of cybernetic models that Elsasser
views mechanism as an abstract process. This is quite close to
the use of mechanism in the informal way common in modern
biology — for instance, various cybernetic processes are ana-
lysed by Elsasser [52] and their mechanisms discussed; the
reduction of the corresponding physical automata (which in
any case never actually exist) to QM is absolutely not the is-
sue. However, Elsasser later moved away from this kind of
analysis towards an emphasis on finite classes and reducibility
to QM. At this point, mechanism became tied to the molecular
structure of the entity under investigation. Whether or not a
process could be considered a mechanism, depended largely
on its susceptibility to the Grundlagen proof, and therefore on
the nature, finite or infinite, of its class membership. Since
class membership is defined by molecular structure, mecha-
nism ceased to be abstract at this point. One might even say
that it became materialist. For instance, for the early Elsasser
electrical conduction in a nerve or in a copper wire was an
example of a mechanism implemented in different entities.
However, in his later work, the nerve has acquired irreducible
complexity by virtue of being composed of membrane lipids,
proteins etc, and therefore cannot be analysed in the same way
as the copper wire.

B. Biotonic Laws are Commonplace, Including Such
Things as Natural Selection

Elsasser sometimes gives the impression that he believes
that molecular biologists are opposed to any kind of law that is
not rigidly mechanistic in his sense of the word. However, it is
clear in practice that modern biology is full of laws, principles,
assumptions and working hypotheses that are in no way re-
ducible to QM. The single most outstanding example of this is
the theory of Natural Selection, as previously recognised by
Olby [42]. As formulated by Darwin and his contemporaries,
it operated entirely at the level of the fitness of the individual
organism. Even with the advent of population genetics in the
1930s and then molecular evolution in the 1960s, and the con-
sequent shift in emphasis from the whole organism down to
single genes, along with far greater understanding of processes
such as mutation, there is no serious claim that natural selec-
tion would be predictable merely from perusal of the equations
of QM. A distinction can be made between “downward” and
“upward” analyses in this context [80]. Mutation in DNA can
be studied right down to the QM level, and may be said to be
explicable in terms that satisfy QM. However, although one
can reduce mutation to QM, one cannot deduce mutation from
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pure QM. One might be able to deduce the occurrence of a
particular mutation if extensive information were given about
molecular conformations of nucleotides immediately before
the event, and the molecular environment in which they were
situated, and one then asked the question: ‘given what is
known about QM phenomena and given the state of this mo-
lecular system, what is likely to happen?’, but this deduction
upwards is very different in kind from the reduction down-
wards.

Indeed, the modern tendency in evolutionary theory is to-
wards abstraction of the evolutionary process, creating what
has been called a “Universal Darwinism” [89] that could in
theory, if not yet in practice, encompass such things as chemi-
cal evolution and socio-cultural evolution as well as the phe-
notypic and molecular evolution more familiar from biological
contexts. Attempted explanation of any of these evolutionary
processes, whether biological or of another kind, below the
level necessary to include the universal tenets of variation,
reproduction and selection constitutes greedy reductionism.
Universal Darwinism provides explanations of the evolution
of abstract entities, some of which correspond to actual bio-
logical entities. Even if there were no actual biological entities,
Universal Darwinism would still have a logical consistency
and explanatory power.

Given the apparent example of Natural Selection as the
most successful biotonic theory of them all, it is surprising that
Elsasser has so little to say concerning evolution. In his early
period he confined himself to comments that adaptation
“comes out of the environment” not by “the incorrect La-
marckian” process but by the “well-substantiated neo-
Darwinian scheme”, although immediately qualified this with
the point of view that it “makes little difference” in terms of
his theory. His more specific thought is that evolution “over-
emphasise[s] the exogenous part of the information content of
organisms” but it is not clear if he means by this that adapta-
tion is overemphasized as a mechanism for evolutionary
change. Given his opposition to genetic determinism, it does
seem a little incongruous to be seeking endogenous informa-
tion content, unless he implies that it is of a non-genetic nature
[52]. Given his later suggestions concerning holistic memory,
it perhaps seems that this is a predecessor of that later view,
but the treatment is too brief to make this clear. A slightly
longer later passage [46] contrasts the external inputs of evolu-
tion with the internal inputs Elsasser has in mind, but does
little to clarify their nature.

Elsasser produced a single paper specifically dedicated to
the question of evolution within his theory [63]. He criticised
the use of the term “the theory of evolution” on the grounds
that it is not really a theory in the sense that would satisfy a
physicist, that it cannot be expressed as “a set of propositions
about classes” which are “interrelated” to give “structure” and
also be “formalized by means of the logical calculus of
classes”. Nevertheless, he admitted that there are cases where
“adaptations by a single mutation” can be demonstrated but
claims these are exceptions “in the nature of limiting cases”
from which it is “quite dangerous to extrapolate from there to
a general case with its multiple, interrelated parameters”. As a
result of this “arguments from evolution cannot be used either
to support or criticise organismic theory”. Despite Elsasser’s
objections, an attempt to do this will be made below.
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Elsasser’s later statements on evolution concern mutational
pressure and Shannon’s Law [68, 69] and therefore do not
directly take natural selection into account. His argument con-
cerning entropic spread of phenotype is quite similar to Mul-
ler’s ratchet, and the same solution is to be found in a combi-
nation of purifying selection and recombination. Random mu-
tation under conditions of selective neutrality will increase the
informational entropy of the gene pool over time, indeed ge-
netic diversity at well characterised loci is an established
method of dating founder effects in populations (for instance
in human Y-chromosomes). Elsasser’s argument that this will
result in an increase in phenotypic entropy identifiable in the
fossil record is however a non sequitur except in the most ex-
treme cases of neutrality over most of the genome over long
period of times. His attempt to use this to disprove any con-
nection between genotype and phenotype is therefore one of
his weaker arguments.

C. On Occasions, Elsasser Comes Very Close to Hoyle’s
Fallacy

‘Hoyle’s Fallacy’ has been most widely disseminated by
astrophysicist Fred Hoyle, who claimed that evolutionary
processes producing adapted organisms were so unlikely as to
be equivalent to a whirlwind passing through an aircraft
hanger full of spare parts and assembling a jumbo jet by acci-
dent [90, 91]. Other analogies used by less imaginative authors
have included a platoon of chimpanzees producing the works
of Shakespeare by random typing, and so on. On the basis of
this, Darwin’s theory is deemed untenable, and other theories
are proposed, usually Lamarckian or frankly creationist de-
pending on the background of the writer. Hoyle’s Fallacy is a
surprisingly easy mistake to make when one has not quite
grasped how powerful a force selection can be. Even John von
Neumann was sceptical of Darwinism for this reason [92], and
Elsasser himself gives a hint along these lines on two occa-
sions [7, 65]. In the second of these passages, it is clear that
Elsasser misunderstands Monod’s “chance and necessity”
motto to imply that Darwinism is a theory of “accidents” acted
on by “chemical laws”. One passage [7] suggests that Elsasser
favoured Goldschmidt’s macromutational theories over those
of Darwin. Paul Davies [93], also a physicist and one of the
modern complexity theorists who cite Elsasser as an influence,
gives a fairly sympathetic account of Hoyle’s Fallacy, despite
the fact that he does seem to understand the principle of natu-
ral selection; what he seems to lack is any notion of its power.
All evolutionary biologists, however, concur that such reason-
ing is merely a trivial error [94, 95] and Radner and Radner
[96] point out that it is really a residue of views more gener-
ally held in the 1920s, prior to the modern evolutionary syn-
thesis.

The root of Hoyle’s Fallacy is the assumption that large
state spaces are somehow fatal to deterministic processes. For
Hoyle, the immensity of protein state space forces him to the
mistaken conclusion that it is impossible that any process
could find optimal configurations in it within limited geologi-
cal time. For Elsasser, the immensity of all biological state
spaces leads to an even more radical conclusion concerning
the Grundlagen proof and determinism. A more recent exam-
ple of the use of a state space argument in a systems biology
context, is given by Harry Rubin [7]. The number of genes
involved in sporulation in Bacillus subtilis was initially esti-
mated by classical genetic methods to be around 800 [97] and

Derek Gatherer

recent molecular techniques give a slightly more conservative
figure of 193 [98]. There is nevertheless by either estimate an
immense state space of genotypes relevant to sporulation.
Even if each gene can be either on or off, a gross simplifica-
tion, there are still at least 2193, or around 10%, possible states
in this system (c.f. the 10 atoms in the universe — [66]). At
face value, this is a sobering thought to any systems biologist
where networks of only a dozen or so elements present con-
siderable computational strain in a simulation.

Quantitative genetics, however, suggests that in most po-
lygenic situations, the heritability of any trait can be substan-
tially attributed to handfuls rather than hundreds or thousands
of genes. Therefore, no systems biologist would need informa-
tion on the state of all genes in order to make a high precision
prediction of the bacterium’s biosynthetic state. Although full
state space for the genetic network in Bacillus sporulation is a
near-astronomical 2'%, relevant state space may be as small as
2% and thus well within the reach of modern computing
power. A simpler analogy concerning this kind of reasoning is
provided by the solar system, the archetypal Newtonian
mechanistic system. Here, the interactions between all the
bodies make for a bewilderingly complex set of simultaneous
equations that defy full solution by even the most powerful
computers. Nevertheless, cosmologists can make predictions
about the future state of the solar system to a degree of accu-
racy sufficient to send probes accurately to other planets with
projected arrival times many years in the future. The reason
for this is that the future state of each planet is overwhelm-
ingly dominated by its interaction with the sun, making the
calculation of the effects of all other planets dispensable in
practice [80].

This tendency, to imply the necessity of impossible
searches of immense state space, is the root of Hoyle’s Fal-
lacy, and also seems to be the central weakness of the applica-
tion of the principle of finite classes. It should be recalled that
Elsasser applied it in two ways: initially as an operational con-
straint on the practicalities of reducing complex systems to
underlying simpler systems, and later as a metaphysical basis
for the inapplicability of the Grundlagen proof, and therefore
the inapplicability of Newtonian determinism, to biological
objects. Elsasser only contrasted two kinds of situation in state
space: the astronomically large theoretical space and its van-
ishingly small proportion constituting actual occupied state
space in the real world. However, natural selection may seri-
ously limit the proportion of state space within which the re-
sulting organism will be viable. Full theoretical phase space
therefore contains a sub-space here termed ‘accessible state
space’. This is the portion of full state space that could be oc-
cupied in the real world.

In other words, Elsasser simply assumes that, for state
space:

possible >>> real,

However, if we allow:
possible >>> accessible > real,
or:

possible >>> accessible = real,
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then the implications for Elsasser’s application of the principle
of finite classes are serious. In effect, the situation he describes
of sub-spaces within infinite state space which exhibit deter-
minism owing to their local restrictiveness [56], may actually
be nearly the whole picture rather than a local exception. If
real configurations of biological objects are strongly con-
strained by their environment, or by internal structural factors,
or by natural selection, then the Grundlagen proof may well
apply in more cases than Elsasser is willing to concede. By
failing to consider the implications of natural selection on state
spaces, Elsasser commits essentially the same error as propo-
nents of Hoyle’s Fallacy.

D. Quantum Decoherence Means that Proteins do Exhibit
Newtonian Mechanics

Recent explorations of the interface between the quantum
and macroscopic worlds suggest that the interaction of neigh-
bouring atomic particles causes the local collapse of indeter-
minacy [99]. Although it remains possible that QM effects can
leak out into the macroscopic world, laboratory studies have
so far only managed to demonstrate wave behaviour in mole-
cules as large as porphyrins or fullerenes [100]. These are con-
siderably smaller than proteins. Where QM effects are mani-
fested in protein action, it is at the level of individual atoms
rather than the protein as a whole [101, 102]. In short, there is
simply a lack of empirical evidence for the indeterminacy pre-
dicted by the principle of finite classes.

E. Elsasser Decided on his Conclusions and then Sought
Supporting Evidence

Several aspects of his writing style suggest that Elsasser
started out from the premise that biology is not mechanistic
and sought evidence to support what he had already decided to
believe. Some of the inspiration for this came from his experi-
ence of being psychoanalysed as a young man [6, 157, 158]. A
considerable proportion of his later energies seemed to be
taken up with maintaining that his intuition of inscrutability of
life, which came to him during his psychoanalysis, was scien-
tifically valid even after molecular biologists had provided
many satisfactory answers.

At one point Elsasser [46, 54, 55] explicitly lays out a se-
ries of logical steps which appear to show how he worked
backwards from his intuitive conclusion towards his proposed
justification:

1. the theory of means (meaning the Grundlagen proof) is
inescapable

2. therefore biology must ultimately conform to it

3. therefore we must fall back into reductionism, but we

do not want to

4. therefore we must look for evidence that the theory of
means does not apply in organisms

5. but we cannot contradict QM, so the evidence we col-
lect cannot lead to new laws in the strict sense [55].

This would seem to imply that Elsasser’s application of the
principle of finite classes was very close to a logical sleight of
hand. As a Jungian, he wished to derive an anti-mechanistic
proof, but as a physicist and follower of von Neumann, he
could not. The solution lay in stepping back and contravening
the axioms of physics while leaving the laws intact. Elsasser’s
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honesty in laying out the way his theory developed is, of
course, to be applauded. However, it does not inspire confi-
dence in its cogency. If one considers Elsasser’s central idea to
be an opposition to what he saw as anachronistic manifesta-
tions of the Cartesian reductionist, and by implication crudely
mechanist, program in biology, it is possible to see how it
evolved as the scientific background changed. In the 1950s,
the tentative nature of early molecular biology made it possi-
ble to create an info-sceptic case for the failure of genetic de-
terministic models in development. As the 1960s progressed
and the understanding of gene regulation and the genetic code
increased, it became apparent that such a stance was unten-
able, and Elsasser shifted to more fundamental arguments
against determinism in protein function. By the late 1970s,
protein structure-function relationships were far clearer and
there was no empirical evidence for the predicted conse-
quences of the principle of finite classes. Elsasser’s final posi-
tion followed a retreat from specific arguments about proteins
or other molecules and into the question of overall systems
complexity.

SUMMARY AND REASSESSMENT OF ELSASSER’S
BIOLOGY

Until recently, it seemed that Elsasser’s biological work
might vanish into obscurity, with references to it in the litera-
ture becoming increasingly rare from the mid-70s onwards,
even though Elsasser remained scientifically active in biology
until the late 1980s. Under such circumstances, the present
article would scarcely be required, but his star is once again on
the ascendant, with the realisation that Elsasser’s themes are
important to modern biology in a way that they were not in an
era of simpler model systems studied using simpler methods.
Now that the technical difficulties of systems biology have
become apparent, anyone with original thoughts on the mean-
ing of complexity is well worth a reassessment. It is mildly
shocking that, amid the plethora of recent books, both popular
and academic, devoted to complexity theory, barely a single
one mentions Elsasser [93]. In fact, many of the current con-
texts in which Elsasser is cited appear to be only tangential to
his actual theories, and are often either misunderstandings,
misrepresentations or selective readings of his work. Many
enthusiasts are clearly excited more by his reputation as an
unorthodox thinker than by any specific idea. If Elsasser’s
theories are to be of value to modern biology, it is important
that they be clearly and fully exhibited and their strengths and
weaknesses exposed.

Elsasser’s early info-scepticism has been largely rendered
obsolete by advances in molecular biology. It is true that there
is still extensive doubt concerning the extent to which biologi-
cal processes are genetically determined, for instance the de-
bate concerning human intelligence or culture [103]. However,
progress in molecular embryology in particular has demon-
strated that it is possible to see the genome as a program for
development without any implication of a resurrected prede-
terminism. Nevertheless, Elsasser provides a salutary warning
against the inappropriate adoption of genetic determinist mod-
els where direct evidence is lacking.

There is no doubt that the distinction between finite and
infinite classes, first developed during Elsasser’s middle pe-
riod, is a logically valid one, and that finite classes are com-
mon in biology. One example of an area where finiteness has
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recently reared its head, is found in standard sequence analy-
sis. Based on the nucleotide content (k=1, where £ is a charac-
ter string length) of a completely sequenced genome, it is pos-
sible to produce prior probabilities for the occurrence of the
dinucleotides (k=2), with either a random expectation or a bias
of choice defined by a Markov transition table. Since there are
only 16 dinucleotides - and 10 once self-complementary
dinucleotides are accounted for [104] - the human genome is
large enough to make a comparison between predicted and
actual dinucleotide frequencies statistically valid. This is the
basis of the technique of genome signatures that has found
application in clinical microbiology as well as basic compara-
tive genomics [105]. The same is the case for trinucleotides
(A=3) and larger, but as k increases the number of potential
oligonucleotides — i.e. the theoretical state space of k-mers —
increases exponentially. Any given 10-mer string, assuming a
zero-order Markov transition table and equal freqluency of
nucleotides, will only be expected to occur every 4'°, or one
million or so, bases. Likewise any given 15-mer can only be
expected every 10° bases, or roughly three times in the entire
human genome. Statistical assessment of the significance of its
actual occurrence in any genome is therefore problematic. The
problem is exacerbated when smaller genomes are used or
when one studies the frequencies of strings in protein rather
than DNA sequences (in proteins the theoretical state space
has dimensions of the order 20 rather than the 4 of DNA).
Future studies in other areas will no doubt throw up further
examples of the principle of finite classes in unexpected loca-
tions. Elsasser was undoubtedly correct that individuality and
finiteness do present problems for any quantitative biological
analysis.

Nevertheless, although the principle of finite classes seems
solid in itself, Elsasser’s more radical conclusions concerning
this principle are implausible in the light of more recent re-
search. Extensive studies on protein structure and function
have yielded no examples of the indeterminacy predicted by
Elsasser’s non-Neumannian axiomatics. In the light of several
decades of empirical structural biochemistry of proteins, there
is simply no compelling reason not to apply Newtonian mod-
els to proteins. Various catalytic processes and interactions do
depend on quantum effects, but these are confined to the sub-
atomic level. Decoherence mops up quantum indeterminacy at
the level required for doing structural-functional biochemistry
on proteins.

Despite the fact the Elsasser failed to prove the necessity
of biotonic laws by argument from von Neumann and the
principle of finite classes, there is no denying that biological
discourse is filled with biotonic phenomena, in the looser
sense of processes that are not necessarily reducible to QM.
The most important of all is evolution by natural selection,
ironically never identified as such by Elsasser. The importa-
tion of concepts into biology from the theories of chaos, catas-
trophes and self-organizing systems, as well as the tendency of
biology to become a compute-intensive data-driven science
will mean that increasing numbers of new principles discov-
ered will be relational, applying in general to systems like
biological ones rather than being laws that act only in biologi-
cal substances. Davies [93] makes the distinction between
“software” laws and “hardware” laws. Systems biology is
almost entirely concerned with software laws; it is a totally
biotonic science.

Derek Gatherer

Where does this leave reductionism? Modern biologists,
aware of the perils of greedy reductionism, are only inclined to
reduce phenomena to a level where explanatory power is
maximised. For instance, molecular evolutionists study pat-
terns of mutational events in great detail, but it is the event
positions and frequencies that are important, not the chemical
means by which they occur. It is the abstract pattern that
maximises explanatory power in a molecular evolutionary
question. Conversely, a nucleic acid biochemist may be inter-
ested in the actual mutational event itself and its causes in
terms of mutagenic agents, without any reference to the posi-
tion of the event on a chromosome, its occurrence through
evolutionary time, or its phenotypic effect. At an even lower
level a quantum chemist may be interested in the behaviour of
the electrons in pair clouds in nucleotide side chains, without
any reference to the gross molecular structure of any mutation
that might occur as a result. There is no doubt that all of these
levels are connected. However, a full understanding of the
entire process may be a case of diminishing returns for the
practical scientist. Each has to choose the level at which the
question in hand needs to be answered. This process has been
described [94] as hierarchical reductionism.

Just as we need to choose the appropriate level of the hier-
archy of explanations and beware of greedy reductionism,
Elsasser’s work provides a lesson in the avoidance of the op-
posite vice, greedy holism. Elsasser’s intuitive feeling that life
was more than could be explained by science led him on a
long search for reasons why reductionism would not work. An
inflation in the scope of this anti-reductionist agenda can be
seen from the info-scepticism of his early work to the molecu-
lar anti-determinism of his middle period and finally the more
nebulous concepts of his final work that have secured his posi-
tion among counter-cultural theorists. Systems biologists,
dealing with software laws rather than with the raw material
are in little danger of succumbing to greedy reductionism, but
difficulties with the complexity of networks should not lead to
a greedy holism. Just as a transition down a level of the ex-
planatory hierarchy requires justification, so does a transition
upwards. For instance the current debate about the scale-free
nature of biological networks [106] depends very much on the
details of the networks themselves. It is essentially an empiri-
cal question using empirical data, although approached en-
tirely using computers and mathematics. Levels above the
network, e.g. the cell or organism, or below it, e.g. the struc-
ture of the transcription factors regulating it are, for the pre-
sent, only background information. If systems biology remains
focussed on achieving explanation, then it matters little
whether the approach is ‘top-down’ or ‘bottom-up’; indeed it
should be both: “inclusive” [107], or “multi-scale” [108, 109].
A pragmatic holism and a pragmatic reductionism are really
the same approach [110]. Contrary to Elsasser, a mechanism
does not need to be reduced to the quantum level, or be fully
determinate, or to qualify as a mechanism. All it needs to do is
to answer the question of how something works, in a way that
can be seen as a logical consequence of the way other things
are known to work [86]. Insofar as these postulated mecha-
nisms are pragmatically situated, they are likely to be biotonic
explanations, in Elsasser’s sense. Perhaps that is his most im-
portant lesson — that systems biologists should remember to be
biologists. On the other hand, when Elsasser claimed that bi-
ology was in need of an all-encompassing non-reductionist
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theory, he overlooked the fact that we have had one for nearly
150 years. Its name is Darwinism.
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