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Abstract:
Genetic toxicology originated in 1973 with the Ames test, but it has evolved significantly since then. In the early
2000s,  there  was  great  promise  for  the  reduction,  refinement,  and  replacement  of  animal  testing;  however,  the
acceleration of these changes has only occurred over the past 5-7 years. With the advent of new technologies in the
laboratory,  such  as  organs-on-a-chip,  3D  systems,  toxicogenomics,  reverse  dosimetry/qIVIVE,  and
PBPK/PBTK/mathematical modeling, along with advances like induced pluripotent stem cell technology, CRISPR-Cas9
gene editing, automation, advanced visual imaging, big data throughput, and machine learning (ML), there is an
increasing shift away from animal testing. Part I of the study describes the current genetic toxicity tests required by
regulatory agencies for the approval of pharmaceuticals, medical devices, and industrial chemicals, as well as their
limitations. This part explores how new approach methods (NAMs), already in use or in qualification/validation, can
help bridge those gaps, acknowledging that such assays must meet rigorous standards for fitness for purpose, domain
of applicability, and context of use. Additionally, the status of regulatory acceptance and implementation is discussed.
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1. INTRODUCTION
In Part I, the currently accepted OECD Test Guideline

(TG) methods for genetic toxicity testing, along with their
strengths and shortcomings, were presented. It was also
discussed  how  the  ‘linearity  at  low  dose’  concept  (LNT)
came  into  being  and  influenced  the  development  of
genetic toxicity testing in the 20th century. Since then, it
has  been  assumed  that  there  is  no  safe  dose  of  a
carcinogen,  as  extrapolating  to  zero  every  dose  has  a
finite, non-zero risk [1]. Currently, the risk assessment of
carcinogens takes the LNT into account by asserting that a
dose  resulting  in  1.5  cancers  or  fewer  in  one  million
humans  is  not  considered  a  likely  risk  for  developing
cancer (“with uncertainty spanning perhaps a magnitude,
for  exposure  occurring  over  a  lifetime”)  [2].  Although

some carcinogens do have a threshold [3], thus far, LNT is
used for risk assessment purposes [3].

A pressing question for toxicologists became: Which of
the  identified  genotoxic  and  mutagenic  compounds  are
carcinogens,  and  how  might  they  be  best  identified?  As
reported  in  Part  I,  the  Ames  assay  became  the  ‘gold
standard’ for assessing the ability of a substance to cause
reversion  mutations.  Other  types  of  assays  soon
proliferated  to  assess  clastogenic  effects,  such  as  sister
chromatid exchange (SCE) and forward mutations. These
have  become  codified  through  the  standardization  and
harmonization  procedures  of  the  Organization  for
Economic  Cooperation  and  Development  (OECD,
https://www.oecd.org),  whereby  participatory  regulatory
agencies will accept tests performed under the approved
OECD Test Guidelines (TGs). Applicants thus know which
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tests to apply when seeking permission to market a new
pharmaceutical,  agricultural,  or  industrial  chemical,  and
exactly how they must be performed. Standards are made
available  for  the  identification  of  substances  through
methods, such as HPLC or MS, as well as standard quality
control  measures  for  use  in  the  assays.  These  processes
and procedures have enabled the acceptance of results by
regulators in all participating countries, submitted by any
applicant, with confidence that they can be compared with
other  previous  results  and judged objectively  by  criteria
accepted worldwide, referred to as the Mutual Acceptance
of Data (MAD).

Genetic  toxicologists  have  come  to  realize  that  they
cannot  test  all  the  substances  they  need  to  in  time  to
approve applications under strict timelines. The burdens
of time and resources (not the least of which are animal
lives) threaten to become overwhelming. Thus, there is an
emerging energetic movement away from animal testing
as required by conventional tests toward a new paradigm
of  in  vitro  testing1,  often  referred  to  as  new  approach
methodologies or NAMs, which are faster, less resource-
intensive, and can be scaled up to high throughput to test
hundreds  to  thousands  of  compounds  in  record  time.
Skepticism  exists  regarding  these  methods,  which  are
gradually gaining wider usage. Several are under review
by  OECD  and  are  expected  to  become  approved  TGs.
Increasingly,  data  support  the  notion  that  NAMs  can
produce results  on par with or better than traditional  in
vitro or in vivo genotoxicity tests, which will be examined
in detail in this study.

There  are  new  concepts  to  accompany  genotoxicity
NAMs, such as the 10 key characteristics of carcinogens,
which  are  the  abilities  of  an  agent  to  1)  act  as  an
electrophile either directly or after metabolic activation; 2)
be  genotoxic;  3)  alter  DNA  repair  or  cause  genomic
instability;  4)  induce  epigenetic  alterations;  5)  induce
oxidative  stress;  6)  induce  chronic  inflammation;  7)  be
immunosuppressive;  8)  modulate  receptor-mediated
effects;  9)  cause  immortalization;  and  10)  alter  cell
proliferation,  cell  death,  or  nutrient  supply  [4].  These
characteristics  were  defined  by  consensus  to  develop  a
framework for  evaluating mechanistic  data on candidate
carcinogens  and  their  effects  on  human  health.  Another
important  new  concept  is  that  of  Adverse  Outcome
Pathways  (AOPs),  which  represent  a  conceptual
framework  describing  the  sequence  of  biological  events
starting  from  a  molecular  initiating  event  (MIE)  and
leading  to  an  adverse  outcome  (AO),  triggered  by  a
stressor,  such  as  a  xenobiotic.  The  use  of  information
about how a drug or other substance produces an effect in
the body, such as the receptor or molecular pathway that
is  targeted,  describes  mechanisms  of  action  (MOAs).
These  are  elements  of  AOPs  and  are  used  to  develop
Integrated Approaches to Testing and Assessment (IATAs).
IATAs  involve  the  combination  of  many  sources  of
information in order to evaluate the safety or hazard of a
substance  [5].  These  recently  developed  concepts  bring
together all the elements of the new framework, including
OMICS  technologies,  in  silico  technologies  (e.g.,

Benchmark  Dose  Modeling  and  AI-aided  modeling
approaches),  and  the  literature/in  vitro-derived  internal
versus  the  physically  measured  external  dosages.
Together, they are utilized in the quantitative in vivo to in
vitro extrapolation (qIVIVE) method, which proceeds from
in  vitro  toxicity  results,  physiological  data,  and
physiologically based pharmacokinetic modeling (PBPK) to
derive human exposure levels that may be considered safe,
without  the  need  for  additional  animal  testing.  In  this
regard,  an  excellent  review was  carried  out  by  Lu et  al.
[5].

The  purpose  of  this  current  review  is  to  survey  and
describe  new  approaches  in  genetic  toxicity  testing,
providing  a  side-by-side  comparison  of  old  and  new
methods with references. This allows interested scientists
to  assess  which  methods  are  most  suitable  for  their
projected needs and understand how the field is evolving
in response to regulatory requirements and acceptance.

2. METHODS
The searches were conducted in PubMed, Scopus, Web

of  Science,  and  EMBASE.  The  literature  was  searched
using  the  following  strings:

(“new approach method*” OR “NAMs”) OR (genetox*
AND genetic AND toxic*) OR (“in vitro”)

(“new approach method* OR “NAMs”) AND (strengths
OR  shortcomings)  AND  (advantages  OR  disadvantages)
AND  genetic  AND  toxic*AND  (“animal  replacement”  OR
3R’s),  with  or  without  “short  term”,  with  or  without
“mutation*”, with or without “technology”, with or without
“unconventional”  and  variations  of  these  terms;  and  the
following phrases were used: strengths and weaknesses of
new approach methodologies for genetic toxicity testing,
challenges  of  new  approach  methodologies  for  genetic
toxicity  testing,  challenges  of  animal  replacement  in
genetic toxicity testing. Afterward, the snowball technique
was used to expand on the results obtained.

‘New  Approach  Methodologies’  were  restricted  to
those  referenced  from  2014  to  2024,  and  lacked
internationally harmonized standardization and validation,
i.e.,  non-OECD and non-ECVAM approved TGs (although
several  are  in  process).  Citations  from  abstracts,
proceedings,  presentations,  or  white  papers  were  not
included.  In  vivo  study  methods  were  not  included  (but
some  methods  are  a  mixture  of  in  vitro  and  in  vivo  and
were included).

This review discussed the regulatory status of NAMs,
drawing  on  professional  knowledge  and  experience,  as
well  as  research  from the  literature,  to  ensure  the  most
up-to-date  information.  Information  about  the  qIVIVE
process, reverse dosimetry, AED/BER, PBK modeling, and
BMD modeling was gleaned from years of experience and
knowledge about the current state of the art in refining,
reducing, and replacing animals in toxicity testing.

The material and figure describing the ONTOX project
are included by permission of ONTOX.

1All  tests  of  living  organisms  require  a  sample  of  the  organism
although  not  all  require  the  ultimate  sacrifice.
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2.1. Shortcomings and Strengths of NAMs

2.1.1.  In  vitro  (yeast)  DNA  Deletion  (DEL)
Recombination  Assay  (Single  Test  Alternative  to
Genotoxicity  Test  Battery)

2.1.1.1. Principle of the Assay
The yeast DNA deletion (DEL) recombination assay has

been proposed as a simple and rapid method to measure
the  reversion  frequency  in  the  HIS3  gene  through
homologous  intrachromosomal  recombination  [6-9],
offering a high degree of both sensitivity and specificity to
carcinogens.

Ku  proposed  adapting  it,  along  with  a  toxicogenomics
add-on for MOA determination (and possibly a confirmatory
in  vivo  assay)  as  an  alternative  to  the  ICH S2  genotoxicity
test guidelines, which include both in vivo and in vitro testing
[7]. At that time, cell transformation assays represented the
only in vitro alternative; however, they were inadequate and
misleading, and the ICH test battery had been tested using
large databases and found to have limited predictive power
for  “carcinogenicity  outcomes,  which  have  genotoxic
relevance”. The argument was that beyond the initial test set
used  to  develop  the  ICH  battery,  there  was  little  actual
predictive utility, as demonstrated by retrospective analysis
of marketed drugs. The frequent occurrence of false positives
in  standard  in  vitro  assays  was  also  mentioned  as  a
disadvantage. Therefore, a single in vitro test was proposed
to detect mutations of carcinogenic relevance, which would
be  widely  applicable  to  various  test  situations  (including
contaminants,  industrial  chemicals,  drugs,  and  candidate
biologics)  and  would  mimic  human  Phase  I  and  II
metabolism.  Therefore,  and  to  additionally  provide  MOA
information, the system should possess a genome highly like
that of humans. Additionally, it should be amenable to high
throughput.  Several  arguments  supporting  the  association
between DEL recombination in yeast and carcinogenesis, as
well as the improved reliability of detecting true tumorigens
[7], were put forward.

2.1.1.2. Strengths and Weaknesses
The  system's  strengths  include  its  ability  to  detect

direct-  and indirect-acting carcinogens,  aneugens,  and a
wide  variety  of  DNA  lesions.  It  is  sensitive,  specific,
simple, and fast; with add-ons, it can also yield information
on the mechanism of action (MOA). At 11 days, the assay
length is intermediate.

Gardner [9] emphasized that Saccharomyces cerevisiae is
particularly well-suited for analyzing gene function due to its
ease  of  manipulation  (deletion,  mutation,  and  tagging  by
PCR)  through  facile  homologous  recombination  with  short
stretches  of  sequence  homology.  However,  it  is  a
disadvantage that the in vitro yeast DEL recombination assay
is not a human or a mammalian system, and the results are
therefore an extrapolation based on analogy.  However,  the
metabolism  is  a  good  mimic  for  human  Phase  I  and  II
metabolism.

Following  the  DEL  recombination  assay,  transcrip-
tomic analysis should be carried out to interpret the MOA,
and  potentially,  an  in  vivo  confirmatory  assay  could  be
carried out if the results are equivocal.

2.1.2. 3D Cell Culture Models

2.1.2.1. Principle of the Assay
The  EpiDerm™  tissue  model  [10-12]  consists  of  3-

dimensional  normal  human  epidermal  keratinocytes
(NHEK) cultured on tissue culture inserts and is ECVAM
validated and accepted under OECD test guidelines. A Mat
Tek  EpiAlveolar™  3D  tissue  model  has  also  been
developed  (Charles  River,  2024)  for  the  detection  of
fibrosis-causing agents. Fibrosis can lead to downstream
cancer outcomes in an epigenetic fashion; therefore, this
represents another viable transformation test method.

2.1.2.2. Strengths and Weaknesses
Due  to  their  ability  to  control  all  facets  of  the

experiment, these systems offer the advantages of in vivo
tests  while  avoiding  associated  problems,  such  as
uncertainty  about  whether  the  toxicant  has  reached  the
target organ and at what concentration. Some researchers
[13] have grown human bronchial epithelial cells (HBEC)
at the air-liquid interface, but without the addition of other
cell types, such as immune cells (macrophages), to study
the toxicity of indoor air particulate matter. The addition
of multiple cell types, such as goblet cells, a secretory cell
type  of  the  respiratory  airway,  or  Langerhans/dendritic
cells,  an  immune  component  of  3D  reconstructed  skin,
improves  the  functionality  and  predictive  capability  of
these models. Information about the MOA of a substance
can also be gleaned from these models. These models have
the  advantages  of  directly  visualizable  and  quantifiable
outcomes  that  are  comparable  to  traditional
histopathology.  The  systems  are  versatile,  being
manipulable  in  many  ways  [14].

Another distinct advantage of 3D cultures is that they
may detect changes in cells leading to cancer that are not
normally detectable using other types of  genetic toxicity
assays. Either direct or indirect (i.e., epigenetic) changes,
such  as  those  associated  with  phototoxicity,  wound
healing, fibrosis, and inflammation, leading to cancer, can
be detected and visualized.

These  systems  have  the  disadvantage  of  not  being  a
high-throughput  process  in  any  respect,  and  are  time-
consuming,  labor-intensive,  and  technologically
demanding.

2.1.3. 3D Reconstructed Skin (RS) Comet Assay

2.1.3.1. Principle of the Assay
Recently  accepted  for  the  OECD  TG  development

program, this assay was validated by a Cosmetics Europe-
led ‘round robin’ laboratory validation project intended to
address  the  lack  of  alternatives  to  traditional  in  vivo
genotoxicity testing. This is  because, under EU rules for
cosmetics,  an in  vitro  positive  test  result  would  rule  out
the  commercial  use  of  a  substance  without  further
confirmatory  in  vivo  testing  being  permitted.  This  effort
also  supports  the  development  of  dermal  genotoxicity
assays [14-16]. It aims to evaluate the performance of the
test  using  the  Phenion®  Full-Thickness  skin  model  in
various  regulatory,  academic,  and  industry  laboratory
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settings.  The  researchers  applied  chemicals  three  times
over  a  48-hour  period,  then  isolated  keratinocytes  and
fibroblasts, which were subjected to electrophoresis using
the  standard Comet  assay,  with  the  percent  tail  DNA as
the recorded outcome. The experiment was conducted on
32  substances  in  a  blinded  manner.  Results  were
evaluated  by  a  statistician  and  then  decoded  [14].

2.1.3.2. Strengths and Weaknesses
The  assay  was  highly  predictive  (sensitivity  80%),

specific  (97%),  and  accurate  (92%).  Intra-  and  inter-
laboratory  reproducibility  were  93%  and  88%,
respectively. It was asserted that the method is useful for
confirming  the  results  of  standard  genotoxicity  assays,
such  as  the  Ames  test,  and  can  fulfill  EU  Cosmetics
Regulation  EC  No.  1223/2009  requirements  that  ban
animal  testing.  It  can  also  confirm in  vivo  results  under
REACH.

2.1.4. Reconstructed Skin Micronucleus (RSMN)

2.1.4.1. Principle of the Assay
This assay combines the micronucleus (MN) assay with

the  EpiDerm™  three-dimensional  in  vitro  reconstructed
skin (RS) model.  RSMN is  intended for dermally  applied
products,  not  as  a  stand-alone  assay,  but  rather  as  a
follow-up to verify  the results  of  a standard genotoxicity
assay, and it is accepted by European regulatory agencies
[17-19].

2.1.4.2. Strengths and Weaknesses
Validation  studies  have  demonstrated  good

transferability, inter- and intra-laboratory reproducibility,
specificity  (87%),  and  sensitivity  (65%).  However,
sensitivity was further increased to 80% by the addition of
a  72-hour  treatment  to  resolve  equivocal  results.  In
combination  with  the  3D  skin  comet  assay,  the  assay
sensitivity increased to 92%. Fluorescently labelled cells
are  visually  scored  for  the  presence  of  micronuclei  in
binucleated  cells;  automation  may  speed  the  process.

Some of the advantages include topical application of
the test substances, the relative rapidity of the test (total
treatment time of 48 hours), and the fact that it has been
thoroughly  validated.  Another  advantage  is  that
compounds testing negative after 48 hours can be easily
retested up to 72 hours, which was found to increase test
sensitivity.  These  qualities  are  likely  to  result  in
significantly  lowered  resource  requirements  when
measured  against  traditional  animal  skin  testing.  This
method is human-based and does not utilize cells of animal
origin, but it complements other methods that may employ
animal-based components.

2.1.5.  Bhas  42  Cell  Transformation  Assay  (Bhas  42
CTA)

2.1.5.1. Principle of the Assay
Also  in  the  OECD TG pipeline,  the  Bhas  42  CTA is  a

short-term,  sensitive  assay  for  the  detection  of  chemical
carcinogenicity.  It  is  not  a  genetic  toxicity  assay  per  se,

but  it  can  assess  the  potential  of  a  substance  to  cause
changes to cells that might signal potential nongenotoxic
carcinogenesis  [20].  As  a  modification  of  the  NIH  3T3
method,  it  was  developed  through  the  efforts  of  several
labs  [21-23]  and  later  validated  by  an  inter-laboratory
study  [22]  and  an  international  consortium  [24-26].

Sasaki et al. [26] described the method of using v-Ha-
ras gene-transfected mouse BALB/c 3T3 A31-1-1 cells  to
determine  whether  a  chemical  is  an  initiating  or
promoting  (non-genotoxic)  carcinogen.  However,  the
method is not used to distinguish between genotoxic and
non-genotoxic  chemicals,  but  to  detect  carcinogenicity
regardless  of  genotoxicity.  The  Bhas  42  cells  were
developed  from  BALB/c  3T3  cells  through  transfection
with plasmid pBR322 containing Ha-MuSV-DNA, clone H1
(v-Ha-ras)  [26-28],  and  transformed  using  12-O-
tetradecanoylphorbol-13-acetate  (TPA).

The two components of the assay initially were termed
the  initiation  activity  assay  and  the  promotion  activity
assay but are now termed the ‘proliferation phase’ test to
address the late initiation stage that the test assesses, and
the ‘stationary phase’ test to define the proliferative stage
where cells are treated at the stationary phase, and this
provides a growth advantage for anomalous cells.

2.1.5.2. Method
These two phases vary in terms of time and treatment

conditions. In the first component, cells are seeded at 4 x
103 cells/well (day 0) and treated early in the assay period
(days 1-4) only. This allows target cells to undergo several
rounds  of  division  before  contact  inhibition  occurs,
allowing  fixation  of  DNA  mutations.  In  the  promotion
component, cells are seeded at 1.4 x 10^3 cells/well and
treated  at  sub-confluence  (days  4-14),  then  continued
without  further  treatment  for  a  total  of  21  days.

The  use  of  the  stationary  phase  test  is  intended  to
detect  chemical  compounds  that  can  act  as  tumor
promoters.  However,  they  are  considered  negative  or
equivocal  in  the  Ames  assay.  For  those  compounds  that
are positive in the first or proliferation phase, the Bhas 42
CTA  can  serve  as  a  confirmatory  assay.  Compounds
positive  in  both  components  are  considered  ‘complete
carcinogens’.  Currently,  this  assay  has  been
commercialized and is available from multiple sources as a
service or in kit form [29], and has been undergoing OECD
TG acceptance for some time.

2.1.5.3. Validation
Ohmori  et  al.  have  since  measured  gene  expression

over  time  during  the  cellular  transformation  of  Bhas  42
cells by TPA [30] and described the pathways and specific
gene  changes  observed.  Guichard  et  al.  [31]  then
evaluated whether a 12-gene panel could predict the cell
transformation potential of tumor-promoting agents, using
the Bhas 42 CTA. They tested 12 genes that had previously
been  shown  to  be  altered  during  transformation  using
either  silica  nanoparticles  or  TPA.  Four  soluble
transforming agents (mezerein, methylarsonic acid, cholic
acid,  quercetin)  were  tested,  and  it  was  found  that  one
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(mezerein) modified all 12 genes, two (methylarsonic acid
and  cholic  acid)  gave  an  incomplete  signature,  sharing
some  gene  changes  but  not  all,  and  one  (quercetin)
induced  no  change  in  the  12  genes  but  induced
cytotoxicity. Thus, at least for these four agents, they were
unable  to  predict  the  signature  of  a  transforming  agent
using  the  12-gene  panel.  They  hypothesized  that  these
agents  used  different  cellular  pathways  or  molecular
initiating  events  and  thus  could  not  be  classed  together
using a single gene expression pattern.

Masumoto et al. [32] developed a trained convolutional
neural network (CNN) for the automated determination of
transformed foci in Bhas 42 cells, which exhibited an AUC
of  0.95  and  significantly  outperformed  conventional
classification  methods,  as  learned  using  the  OECD
guidance  document.  This  was  true  even  using  untrained
images.  An  important  advantage  is  that  CNN  does  not
require feature extraction and can learn feature extraction
from  the  data,  thus  reducing  the  time  taken  to  classify
transformed or non-transformed foci and the error rate in
classification.

2.1.5.3.1. Strengths and Weaknesses
For an in vitro method, the assay length is somewhat

lengthy  (21  days),  meaning  that  repeated  studies  could
become  quite  time-consuming.  As  with  all  cell  culture
methods, any significant deviations that occur can require
a complete restart of the procedure. Bhas 42 CTA is not a
standalone assay for the detection of genetic toxicity; it is
used as a confirmatory assay only for compounds negative
or equivocal in the Ames assay. It can differentiate tumor
promoters (both genotoxic and non-genotoxic) from non-
tumor  promoters,  which  is  a  useful  approach  but  has
limited  application.

Advantages  include  its  sensitivity  and  the  ability  to
determine  the  transforming  potential  of  a  substance
without an initiator, as the cell line already contains v-Ha
ras. It reduces the time to correctly classify a transformed
versus a non-transformed focus.

2.1.6. ToxTracker®

2.1.6.1. Principle of the Assay
Originally  developed  by  Hendriks  et  al.  [33-37],

ToxTracker  is  a  fluorescence-based  assay  that  measures
the  activation  of  six  reporter  systems.  The  assay  uses
mouse embryonic stem cells (mESC) and detection by flow
cytometry in a 96-well plate format [38].

2.1.6.2. Method
The  first  step  is  to  determine  the  appropriate  dose

range by exposing the cells to multiple concentrations in a
serial  dilution,  up  to  a  maximum  concentration  that
produces 50-75% cytotoxicity, or if not reached, 1 mg/mL
or the maximal soluble concentration. In a 96-well plate,
five concentrations plus positive and negative or  vehicle
controls  are  applied  for  24  hours,  followed  by
measurement of relative mean fluorescence in the treated
vs. (vehicle) control wells, corrected for relative cell count.

Like the Ames and in vitro MN assays, the ToxTracker
assay  relies  on  metabolic  activation  using  rat  S9  liver
homogenate. The Hendriks protocol specified co-treatment
of  cells  with  compounds  and  S9  mix  for  3  to  4  hours,
followed  by  recovery  for  17  to  24  hours,  and  then
detection. However, this procedure required a significant
recovery period due to  S9 toxicity.  Subsequently,  others
[38,  39]  modified  the  procedure  to  increase  sensitivity.
Their  modification  reduced  the  concentration  of  S9,
increased  incubation  to  24  hours,  and  specified  no
recovery  period,  which  apparently  produces  less
interference  with  assay  results.

2.1.6.2.1. Strengths and Weaknesses
ToxTracker  can  detect  several  different  forms  of

cellular  damage.  The  two  major  reporter  constructs
predicting genotoxicity in the ToxTracker assay are Bscl2-
GFP (activated upon the formation of bulky DNA adducts,
which  subsequently  inhibits  DNA  replication)  and  Rtkn-
GFP (activated upon the formation of DNA double-strand
breaks). Other types of damage that are detectable include
oxidative  stress  (Srxn1,  Blvrb  reporters)  and  protein
damage (Ddit3 reporter), which constitute non-genotoxic
mechanisms. Btg2 reporter induction may signal cell cycle
arrest  or  general  genotoxic  stress.  Together,  the
responses  can  differentiate  between  direct  and  indirect
DNA damage and provide information about the specific
pathways involved [40].

In a recent interlaboratory validation study, seven labs
tested  64  chemicals  (both  genotoxic  and  non-genotoxic)
using  OECD  TG  34  and  achieved  intralaboratory
reproducibility  of  73  to  98%  and  interlaboratory
reproducibility  of  83%.  The  sensitivity  of  the  assay  was
84.4%, and the specificity was 91.2% [39].

The  assay  requires  metabolic  activation  and  utilizes
mouse  embryo  donors.  The  maximum  soluble
concentration is 1 mg/mL for some compounds, which may
make it challenging to find a concentration that does not
cause  cytotoxicity,  is  soluble,  and  yet  is  sufficiently
concentrated to produce a significantly measurable effect
in the assay.

2.1.7.  MultiFlow®  and  MicroFlow®  DNA  Damage
Assays

2.1.7.1. Principle of the Assay
Bryce  et  al.  [41-46]  developed  a  miniaturized  flow

cytometry-based  assay  that  automates  MN  scoring
(included  in  OECD  TG  487)  and  a  multiplexed  flow
cytometric-based assay that measures phosphorylation of
histone  H3  (p-H3;  mitosis  marker),  phosphorylation  of
H2AX at serine 139 (γH2AX; double strand DNA breaks),
nuclear p53 content (p53 translocation marker, response
to  DNA  damage),  frequency  of  8n  cells  (marker  of
polyploidization), and nuclei counts (cell enumeration) for
evaluation of cellular genotoxicity.

2.1.7.2. Method
A  sophisticated  data  analysis  strategy  is  employed,

utilizing  multinomial  logistic  regression  (MLR)  to  generate
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probability scores, which are then used to classify chemicals
by  mechanism  of  action  (MOA),  including  clastogen,
aneugen,  and  non-genotoxic.  The  same  authors  later
extended  these  results  to  new  chemicals  with  known
genotoxic  properties  and  tested  the  applicability  of  LR
algorithms  (and  others)  to  data  generated  from  TK6  cells
exposed to 103 chemicals not previously evaluated, tested, or
used  in  training.  Multinomial  logistic  regression  (LR),
artificial  neural  network  (ANN),  and  random  forest  (RF)
models were built using 4-hour and 24-hour MultiFlow data
to predict whether a chemical is genotoxic and to determine
its  predicted  mechanism  of  action  (MOA)  as  clastogenic,
aneugenic,  or  non-genotoxic.  These  were  fed  through  the
models  after  a  set  of  83  previously  studied  chemicals  was
applied  to  train  the  models.  Both  the  individual  model
performance and a ‘majority vote ensemble’ approach were
determined.  Specific  criteria  for  the  number  of  positive
scores  from  successive  concentrations  were  applied,  and
compounds  were  ranked  based  on  a  probability  score.  The
authors aimed to enhance the throughput, predictivity, and
overall generalizability of genotoxicity testing by employing
this  strategy.  The  ANN model  performed  particularly  well,
and the ensemble majority  vote approach added validity  to
the conclusions.

2.1.7.2.1. Strengths and Weaknesses
This test aims to determine only directly genotoxic-active

substances,  and  no  metabolic  activation  is  applied.
Therefore,  any  substance  known  or  predicted  to  require
metabolic  activation  would,  by  definition,  be  classified  as
non-genotoxic.  The  method  was  cross-validated  in  a  7-
laboratory multi-center study of 60 chemicals. The majority
vote  ensemble  score  (2  of  the  3  model  approaches  in
agreement)  was able to produce high accuracy,  specificity,
and  sensitivity  values  of  between  90  and  95%.  The  assay
could not test 49 of 103 chemicals based on inability to reach
the  1  mM  limit,  failure  to  meet  the  assay’s  cytotoxicity
threshold,  or  precipitate  formation.

Advantages  of  the  MultiFlow™  assay  are  its  ability  to
screen compounds and classify them by MOA as clastogen,
aneugen, or non-genotoxic, which can support de-risking of
an  adverse  finding.  It  would  be  a  suitable  choice  as  a  pre-
screen  or  a  mechanistic  follow-up  for  cosmetics  under  EU
rules,  or  for  marketed  chemicals  under  REACH.  For  non-
genotoxic  carcinogens,  it  is  useful  to  study  the  MOA,
especially  for  data-poor  substances.  It  is  a  multiplex,  high-
throughput  assay  with  high  sensitivity  and  specificity,
providing  mechanistic  insights.

2.1.8. TGx-DDI Transcriptomic Biomarker Assay

2.1.8.1. Principle of the Assay
The  TGx-DDI  assay,  developed  by  Li  et  al.  [47],  is

designed  to  identify  potential  genotoxic  substances  and
discriminate  between  DNA-  and  other  types  of  damage
[48].  It  includes  gene  expression  data  for  64  individual
genes,  identified  as  relevant  to  DNA-damage-inducible
substances and known non-DNA damage-inducible genes.
Originally, TK6 cultured mammalian cells were exposed to
28  chemical  substances  (one  of  which  is  a  validated
biomarker  for  aneugenicity,  or  a  change in  chromosome
number), and the resulting gene expression changes were

measured.  The  results  were  then  generalized  to  newly
tested substances that produce the same changes in vitro.

2.1.8.2. Method
Gene expression analysis is used to assess genotoxicity

after cells in culture are exposed to the test substance for
four  hours.  Cell  collection,  lysis,  RNA  extraction,  and
transcriptomic  analysis  are  performed.

Buick et al. [49] employed this combinatorial approach
to  assess  the  potential  genotoxicity  of  ten  data-poor
compounds. Six of the ten were identified as genotoxins by
all three assays in the multiplex, despite being data-poor,
and  the  mechanism  of  action  (MOA)  was  defined  as
clastogenic.  In  four  other  compounds,  the  results  of  the
three  assays  did  not  align,  and  the  MultiFlow®  assay
results indicating non-genotoxicity were used to conclude
that these two compounds were likely false positives in the
MicroFlow®  test.  The  last  two  compounds  were  weakly
DNA-damage  inducing  in  the  presence  of  S9  and  MN-
inducing  by  MicroFlow®,  but  were  identified  as  non-
genotoxic  by  MultiFlow®.  Therefore,  they  were  deemed
equivocal and recommended for further definitive testing.
The  authors  then  potency-ranked  each  of  the  test
substances  using  benchmark  concentration  (BMC)
modeling.

2.1.8.2.1. Strengths and Weaknesses
TGX  DDI  is  an  effective  screening  and  confirmatory

assay  as  part  of  a  battery  of  tests  to  identify  potential
genotoxins,  DNA  damage,  other  cellular  damage,  and
mechanisms of action (MOAs). It is particularly useful for
data-poor substances.

Prototypical substances have been used to confirm the
assay  performance  [49-51].  Multiplexing  the  TGx-DDI
together with MicroFlow® and MultiFlow® assays (above)
is  particularly  useful  because  classifiers  from  the  two
approaches  can  then  be  compared  and  the  results
corroborated.  The  information  that  can  be  derived  from
this multiplex of assays is clearly much more useful than a
simple test of positive or negative genotoxicity alone.

It  was  noted  that  the  resulting  BMCs  could  be
converted  to  administered  equivalent  doses  (AEDs,  as
referred  to  in  qIVIVE  in  the  Discussion)  using  HTTK
models. Since qIVIVE can be used to determine a human
MOE (known as a bioactivity exposure ratio, BER), it may
be practically employed for risk assessment if toxicokinetic
parameters, such as plasma protein binding and metabolic
clearance, are known for the compound(s). This makes it
an  extraordinarily  valuable  technique  for  human  risk
assessment.

This assay is amenable to high-throughput analysis and
can  be  completed  in  as  little  as  one  to  two  days  with
experienced  hands  and  automated  facilities.

Disadvantages include that it is an indirect measure of
damage and has not yet been fully validated (although it
has been cross-tested in experiments).
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2.1.9. MutaMouse™ Assays

2.1.9.1. Principle of the Assay
The  FE1  in  vitro  version  of  MutaMouse™  Transgenic

Rodent Gene Mutation Assay [52-54] is an in vitro transgene
mutation assay that uses the FE1 epithelial cell line derived
from MutaMouse™ lung.  The cells  contain  a  shuttle  vector
with  a  lacZ  mutation  target  that  is  amenable  to  positive
selection of mutants using an E. coli galE-lacZ host and the
PGal (phenyl-β-galactosidase) selection system.

2.1.9.1.1. Strengths and Weaknesses
Maertens  et  al.  [51]  demonstrated  that  for  nine

compounds  that  previously  produced  false  positive  in  vitro
test results, none of them showed positive results in the FE1
in vitro MutaMouse™ transgenic assay. Furthermore, when
compared with the results of Fowler et al. [54] for ability to
induce  micronuclei  in  three  p53-deficient  rodent  cell  lines
(V79,  CHO,  and  CHL)  or  three  p53-competent  human  cell
lines  (primary  human  lymphocyte  HuLy  cells,  human
lymphoblastoid  TK6  cells,  and  human  hepatocellular
carcinoma  HepG2  cells),  the  FE1  MutaMouse  cells
outperformed the V79, CHO, and CHL cells in identifying the
false positive chemicals,  and were equal  in performance to
the human p53-competent cell lines.

Some  positive  attributes  of  FE1  include  its  cytogenetic
stability,  normal  p53  functionality,  endogenous  metabolic
capability (constitutive CYP1A1 and GST enzymes), and the
presence of a retrievable transgene for mutational scoring.

As the in vivo MutaMouse™ transgenic assay is accepted
by  the  OECD  (OECD  TG  488)  [55],  the  in  vitro  FEI
MutaMouse™  assay  serves  as  a  complementary  test  and
should be considered an appropriate screen for compounds
that  previously  produced  false  positive  results  in
conventional  assays,  or  prior  to  conducting  the  in  vivo
MutaMouse™ assay. It has reportedly been submitted to the
OECD multistep evaluation process for validation [56].

2.1.10.  MutaMouse™  Primary  Hepatocyte
Mutagenicity Assay

2.1.10.1. Principle of the Assay
Cox  et  al.  characterized  and  developed  a  second

MutaMouse™  transgenic  in  vitro  assay,  based  on  primary
hepatocytes [57,  58].  This assay was intended to overcome
problems with in vitro genotoxicity assays, including a need
for  metabolically  competent  cells  (and  the  attendant
problems  with  using  rodent  liver  S9),  and  karyotype
instability  issues  (deletions,  duplications,  translocations,
impaired  p53  function,  genomic  drift,  and  changing  cell
growth  characteristics).

After thorough characterization, it was determined that
cells  exhibited  a  normal  phenotype,  were  metabolically
competent,  and  contained  the  lacZ  shuttle  vector  on
chromosome 3, demonstrating that the cells could be used to
measure  mutational  events  after  treatment  with  candidate

compounds  in  vitro.  Cytochrome  P450  induction  by  a
canonical Cyp1a1 and 1a2 gene inducer,  β-naphthoflavone,
was also observed.

Later,  the  same  authors  tested  13  mutagenic  and  non-
mutagenic  compounds,  including  a  range  of  compounds
(direct acting, requiring metabolic activation) and detected a
concentration-dependent increase in mutant frequency of up
to 14.4-fold vs. control in all but one of the mutagens, and in
none of the four non-mutagens (two of which had previously
elicited false positive results). They concluded that for either
chemicals that require metabolic activation or direct-acting
mutagens, the MutaMouse™ primary hepatocyte (PH) assay
can be used as an in vitro gene mutation assay.

2.1.10.1.1. Strengths and Weaknesses
The  PH  assay  has  the  same  advantages  and

disadvantages as the FE1 test, except that it uses primary
hepatocytes and does not require metabolic activation.

2.1.11. Side-by-Side Comparison of Conventional vs.
New Approach Methods

Table 1  [59-95] and (Fig.  1)  present a comparison of
the test applicability, endpoints, assay length, advantages,
and  disadvantages  of  conventional  short-term  and
alternative  (new  approach/NAM)  genetic  toxicity  testing
methods,  listed by test  name,  along with references and
OECD TG numbers.

3.  DISCUSSION  OF  REGULATORY  STATUS  AND
PROGRESS  ON  ALTERNATIVE  IN  VITRO
GENOTOXICITY  TESTING  METHODS

A  paradigm  shift  is  occurring  towards  non-animal
testing  methods.  The  2025  Federal  budget  included  $5
million for a new FDA program aimed at reducing animal
testing by helping to develop new product testing methods
[96].  Some  important  developments  include  a  ban  by
Mexico on the sale of animal-tested cosmetics as well as in
eight U.S. states (Hawaii,  Maine, Maryland, New Jersey,
Virginia, California, Nevada, and Illinois), the passage of
the U.S. Humane Cosmetics Act,  a recent action plan by
the European Parliament seeking to phase out all animal
experiments in the EU, passage of the Korean PAAM Act,
and  work  by  PETA  and  HSUS  to  further  reduce  or
eliminate animal use in experimental testing [97]. The EU
has  prohibited  the  testing  of  cosmetic  products  and
ingredients on animals (2004),  the marketing of finished
cosmetic  products  and  ingredients  tested  on  animals
(2009),  and  the  requirement  for  animal  testing  in
cosmetics  (2013)  [98].  NIEHS,  in  collaboration  with
OECD,  developed  a  guideline  for  non-animal  testing  to
identify skin sensitizers [99]. EPA declared a commitment
to  eliminate  animal  testing  [100],  followed  by  the
Government of Canada [101, 102]. Recently, the FDA has
followed suit.



8   The Open Biology Journal, 2025, Vol. 12 Lynn M. Crosby

Test type Test name Applicability Endpoint(s) Assay Length
(hrs or days) Strengths Disadvantages

OECD TG or
regulatory

status
Reference(s)

Conventional
short-term

Ames Assay

Preliminary screening
tool to evaluate the
carcinogenic potential of
chemicals that are direct
acting or require
metabolic activation

DNA frameshift or
point mutations

48 hr incubation Ease of performance Conflicting results (false -/false + OECD 471 Ames 1973 [59]

  Cost
Not directly concordant to
human carcinogenesis or
mutagenesis

Required under
the Pesticide Ace
(US)

OECD [60]

Best used to rank similar
MOA substances by
relative potency

2 or Time Exogenous S9 required (from in
vivo rodent)

Required under
the TSCA (US)

 

 5 days (fluctuation
method)

Availability of library of
tested compound results to
compare

Dependent on cell culture
conditions  

 

  Prevents unnecessary
further tests Some compounds untestable   

  Allows detection of
potentially carcinogenic
compound preventing
wasted effort

Unsuitable for non-genotoxic
substances

  

   Must establish proper
concentration range

  

   Complicated test conditions
required to get it right

  

      

MN

Staple guideline test

Chromosomal loss,
breakage & spindle
malformation

72 hr incubation

Sensitive
30-40% of compounds that are (-)
in both in vivo and ToxTracker
are (+) in in vitro MN assay

OECD 474, 487 Evans 1979 [61]

Can test human
lymphocytes in vitro

Question of whether toxicant
reaches target tissue (false -)

FDA CFSAN
Redbook 2000:
IV.C.1.d (July
2000)

Fenech 1985, 1986,
2000 [62-64]

Best used as part of a
battery of tests to prevent
misinterpretation of
results

Easily scorable Question of excessive doses
(false +)

 
Schlegel 1986 [65]

  May be detecting ox stress, not
DNA damage

 Heddle 1983 [66]

    Countryman 1976
[67]

    Ramalho 1988 [68]
    Thomas 2003 [69]
     

In Vitro
Mammalian
Chromosomal
Aberration
Test

Staple guideline test Chromosome or
chromatid damage

If lymphocytes
used, add 48 hr for
mitogenic
stimulation

Simple procedure and
quantitation

Cannot detect aneugens.

OECD 473 OECD 2016 [70]
 

Polyploidy alone does not
distinguish aneugens and may
indicate cell cycle perturbation
or cytotoxicity only

Exposure for 3-6
hr, followed by
incubation for 1.5 –
2 cell cycles

Requires metabolic activation

 Requires metaphase arrest

TK6/MLA

Staple guideline test used
since 1980’s

Broad spectrum of
genotoxic effects
(point mutations

3-6 hr
Heterozygosity of TK6 gene
makes possible to detect
point mutations and large
deletions & recombination

Sensitivity low for some
applications to detect direct-
acting agents

OECD 490 (July
2016) Honma 1999 [71]

 

frame-shift mutations
small deletions
chromosomal large
deletions
rearrangements

or Consistent results  Very well
standardized OECD 2016 [72]

Best used as part of a
battery of tests

mitotic
recombinations
(LOH))

24 hr without S9 if
3 hr is negative

Comprehensive, with other
assays (can detect
mutagens that test negative
in Ames Assay)

Low specificity (MLA)  
 

  + 48 hr culture
time (MLA)

  ICH4  

Follow up test after a
positive Ames Assay
result

 
 

    

  72 hr (TK6)     
       

HPRT

Preliminary screening
assay

Limited or small
genetic damage

7-8 days +
incubation on
selection medium

Efficient processing Relatively long protocol

OECD 476 Johnson 2012 [73]
Confirmatory assay for
Ames or large colony MLA   

Low spontaneous frequency of
mutation at the HGPRT locus
makes it difficult to derive
enough cells for quantitation

 Detects any mutations Catches mutations missed
by Ames or TK6/MLA

 

    

Table  1.  Six  different  human  brain  data  samples  of  control  subjects  and  Alzheimer's  disease  patients  with
primary accession numbers and read counts.
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Test type Test name Applicability Endpoint(s) Assay Length
(hrs or days) Strengths Disadvantages

OECD TG or
regulatory

status
Reference(s)

 

Comet
Used as part of a test
battery or as a
confirmatory assay

DNA Single strand
breaks

1 - 3 days

Simple to perform
Caution advised in interpreting
results; intensity of stain is cell
cycle phase dependent

OECD 489

Cook 1976 [74]

 Rapid  Collins 2004 [75]
Type and amount of
damage Inexpensive Careful QC required Karbaschi 2019 76]

 Adaptable   
Rate of strand break
repair Reproducible Cells come from live organisms  

 Reliable   

Alkali labile sites Economical Indirect measure of DNA
damage

 

 Sensitive   
 

 
Low sensitivity for oxidative
damage, crosslinks, bulky
adducts

 

    
    

ROSGlo
Used as part of a test
battery or as a
confirmatory assay

Oxidation of DNA,
RNA, proteins, lipids

Variable
incubation period
with test
substance;

Does not use HRP (which
produces false positive
results)

Indirect measure (epigenetic
damage) OECD 442E Holmstrom 2014

[77]

measurements 2 hr
post-reagent
addition

Amenable to HTS  OECD 425 Promega.com [78]

 Little sample prep required Short-term assay for chronic
process OECD 442D Biospace.com [79]

 Multiplexing possible    
 Simple procedure Not a standalone test   
 Does not require sample

manipulation    

 Fast    
 Sensitive    

γH2AX

Clinical use to assess
DNA damage in biopsies

DNA double strand
breaks

~8 hrs Rapid Lack of standardization/
harmonization

EURL-ECVAM

Reddig 2018 [80]

  Specific (91%)  Kopp 2019 [81]

Used as part of a test
battery or as a
confirmatory assay

Reaction peaks at
from 30 min to 12
hr (depending on
substance and
dose level)

Sensitive (98%) Overlapping foci cannot be
quantitated; signal saturation

Khoury 2013, 2020
[82-83]

  HTS possible but with
reduced interpretability  Kirkland 2008 [84]

  Detects 95% of
carcinogenic compounds
tested

 
 

Pig-a

Used as part of a test
battery or as a
confirmatory assay

Deletions or
mutations in Pig-a

28 days treatment;
detection is within
minutes

Flexible (in vitro or in vivo)
Maximum mutational frequency
may occur weeks or longer after
the last exposure

OECD 470

Araten 1999, 2005,
2010, 2013 [85-88]

   Chen 2001 [89]

Monitoring humans for
somatic mutation Low volume blood required

Verification of mutants by DNA
sequencing is required to
confirm id and quantitate mutant
frequency

Olsen 2017 [90]

   Dertinger 2015 [91]
 Rapid quantification Timing of measurements is key Nicklas 2015 [92]
   Kruger 2015, 2016

[93-94]
 Mutation rate per cell

division also determined Differential organ sensitivity  

 
 

Negative result should not be
interpreted as no in vivo
genotoxicity

 

 Accurately predicts
mutagens, non-mutagens   

  Does compound reach bone
marrow?

 

 Roles of DNA repair
enzymes in BER and other
cell functions can be
investigated

  

    
 HTS method   
    
    

(Table 1) contd.....
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Test type Test name Applicability Endpoint(s) Assay Length
(hrs or days) Strengths Disadvantages

OECD TG or
regulatory

status
Reference(s)

Alternative
short-term

In vitro yeast
DEL
recombination

A proposed alternative to
inadequate and
misleading cell
transformation assays,
and improve on the ICH
battery which had limited
predictive power for
genotoxic carcinogens

Direct and indirect-
acting carcinogens

11 days

Sensitive

Not a human or a mammalian
system

Alternative to ICH
S2, which includes
both in vitro and in
vivo testing

Brennan 2004 [6]

 Specific Ku 2007 [7]
Aneugens Simple Lucas 2019 [8]
 Fast  
Wide variety of DNA
lesions   

 MOA determined by TGX
add-on

 

Spontaneous breaks
during replication   

 Widely applicable to many
substances

 

Induced ds breaks by
S. cerevisiae
homothallic
endonuclease

 
 

 Mimics human Ph I, II
metabolism

 

   
 Ease of manipulation of S.

cerevisiae; facile
homologous recombination

 

   
   

 3D Cell
Cultures

Proposed for use to detect
changes that lead to
cancer that are not
normally detectable with
traditional short term
tests, and for
determination of MOAs of
the active substances

Detects either direct
or epigenetic changes
associated with photo
toxicity, wound
healing, fibrosis,
inflammation, and
that lead to
carcinogenesis

Time window for
experimentation
limited but
improving

Excellent for exploring
MOAs Time consuming ECVAM validated

under OECD TGs Mat Tek 2024 [10]

  OECD 428 Lee 2023 [95]
Direct visualization of
cellular changes Technologically demanding  Maione 2018 [12]

   Nordberg 2020 [13]
Manipulable Labor intensive   
    
Closely resemble in vivo
tissue Not HTS   

    
Reproducible    
    
Controlled    
    
Can explore different
genetic backgrounds,
overlaid disease conditions

   

    
Combine with GWAS for
improved discriminatory
power

   

    

 3D RS Comet

Intended to confirm or
deny a positive
conventional assay result;
in vivo testing not
permitted for cosmetics in
EU

DNA Single strand
breaks

48 hr treatment +
std comet assay
protocol of 1-3
days

Sensitive (80%)

Has the disadvantages
mentioned above for 3D cultures,
and of comet assay

Accepted into the
OECD TG
development
program

Pfuhler 2021[14]

  Specific (97%)
Developing dermal
genotoxicity assays

Type and amount of
damage Accurate (92%)

  Reproducible (93, 88% for
intra-, inter-laboratory)

 Rate of strand break
repair

 

   
 Alkali labile sites  

(Table 1) contd.....
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Test type Test name Applicability Endpoint(s) Assay Length
(hrs or days) Strengths Disadvantages

OECD TG or
regulatory

status
Reference(s)

 RS Skin MN

Intended for dermally
applied products

Chromosomal loss,
breakage, apoptosis,
necrosis

48 hr extendable
to 72 hr + std MN
assay protocol of
72 hr

Specific (87%)

Has the disadvantages
mentioned above for 3D cultures,
and of MN assay

Accepted in EU as
back up or
confirmatory assay

Pfuhler 2010 [15]

 Sensitive (65% -> to 80% by
add’n of 72 hr treatment) Hu 2009 [16]

Not a stand-alone assay –
follow up to conventional
genotoxicity assay

 Aardema 2010 [17]

 W/ 3D skin comet assay,
sensitivity of 92% Dahl 2011 [18]

   
 Rapid  
   
 Topical application  
   
 Validated  
   
 Easy re-testing for added 72

hr if (-) at 48 hr
 

   
 Lower resource

requirements
 

   
 Human based, no animals

required
 

 Bhas 42 CTA

Screening tool for cell
transformation potential
of tumor-promoting
compounds (both
genotoxic and non-
genotoxic)

Detect initiating
(genotoxic) or
promoting (non-
genotoxic) chemical
carcinogens

21 days

Sensitive Assay length is long

OECD certificated
test; method
provided in
OECD’s “Guidance
Document on the
In Vitro Bhas 42
Cell
Transformation
Assay; Series on
Testing and
Assessment No.
231”

Ohmori 2004 [20],
2022 [30]

   Asada 2005 [21]

Confirmatory for
compounds that are + for
initiation

Transforming potential can
be directly determined
without treatment by a
tumor-initiating compound
(cell line already has v-Ha-
ras gene)

Gives limited information Tanaka 2009 [22]

   Sakai 2012 [23]
Confirmatory for
compounds negative or
equivocal in Ames Assay

Reduced time to correctly
classify transformed vs non-
transformed foci

Has limitations associated with
2D cell culture

Sasaki 2014, 2015
[24-25]

   Guichard 2023 [31]
   Masumoto 2021

[32]

 ToxTracker®

Confirmatory for mode
(direct vs indirect) of
action and provides
information about the
MOA, pathways

Detect formation of
bulky DNA adducts +
inhibition of
replication

1-2 days

HTS Dose range finding necessary
In Q3 of 2023
OECD conducted
peer review

Hendriks 2011,
2012, 2013, 2016,
2024 [33-37]

    Czekala 2021 [39]

Detect formation of
DNA ds breaks Internationally validated

May be difficult to hit the sweet
spot between cytotoxicity and
maximum soluble concentration
or 1 mg/mL for some compounds

Conducted under
OECD TG 34  

     
Detect ox stress,
protein damage, cell
cycle arrest

Provides MOA and pathway
information

Requires metabolic activation w/
S9

  

     
 Intralaboratory

reproducibility (73-98%) Requires mouse embryo donors   

     
 Interlaboratory

reproducibility 83%
   

     
 Sensitivity 84.4%    
     
 Specificity 91.2%    

(Table 1) contd.....
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Test type Test name Applicability Endpoint(s) Assay Length
(hrs or days) Strengths Disadvantages

OECD TG or
regulatory

status
Reference(s)

 Multiflow®
DNA Damage

Screen compounds and
classify by MOA
(clastogen, aneugen, non-
genotoxic)

DNA ds breaks

4 weeks

Multiplex, HTS assay Only determines direct-acting
genotoxic agents

Cross-validated in
7 lab multi-ctr
study

Bryce 2014, 2017,
2018 [44-46]

    

Support de-risking of
adverse finding in a
conventional assay

Response to DNA
damage

Data analysis strategy
generates probability scores
used to classify substances

Many compounds were not
testable due to did not reach
cytotoxicity, did not reach 1 mM,
or formed precipitate

    
Prescreen or mechanistic
follow up for cosmetics in
EU

Polyploidization
Multiple models and
consensus voting approach
strengthens results

 

    

Testing of marketed
chemicals under REACH Cell proliferation

Sensitivity, accuracy,
specificity values between
90-95%

 

    
Discover information on
MOA for non-genotoxic
carcinogens

Protein misfolding Provides mechanistic
insights

 

    
 Cell stress   
    
 Cell cycle

dysregulation
  

 MutaMouse
FE1

Screen compounds that
produced false positive
results in conventional
assays

Detects mutations in
any tissue with lacZ
gene as the
mutational target

4-5 days

Cytogenetic stability Requires S9 metabolic activation
to detect some compounds

OECD 488 (OECD
2011, 2013)

Maertens 2017
[51],

     
White 2003 [52],
Cox 2019a,b
[57-58]

Screen prior to in vivo
MutaMouse assay

Score gene
mutations,
chromosome damage

Normal p53 functionality, Scoring slow, laborious Validation in
process

 

      

 
 Endogenous metabolic

capability
Spontaneous background
frequency is high compared to
endogenous genes

Well established
protocols

 

      
  Possession of a retrievable

transgene for mutational
scoring

Scoring may require specialized
reagents

  

      
  Convenience of in vitro

manipulability, sequencing
Transgenes are not endogenous
(no transcription-coupled repair
of scored loci)

  

      
  

Reliable

Except for spi- selection and the
lacZ plasmid model, cannot
detect mutations from large
deletions and chromosomal
aberrations

  

      
  

Reproducible
Multiple systems required for
comprehensive coverage of
mutational MOA

  

      
  Clonal selection not

required
Selective plating and manual
scoring required

  

      

 MutaMouse
PH

Screen compounds that
produced false positive
results in conventional
assays

Detects mutations in
any tissue with lacZ
gene as the
mutational target

4-5 days
Same as FE1 except uses
primary hepatocytes and
does not require metabolic
activation

Same as FE1 except uses
primary hepatocytes and does
not require metabolic activation

OECD 488

Chen 2010 [56]

  Cox 2019a, 2019b
[57-58]

Screen prior to in vivo
MutaMouse assay

Score gene
mutations,
chromosome damage

 

For  U.S.  regulatory  acceptance  of  substances  added
directly to food, a Food or Color Additive Petition must be
submitted. For indirect (food contact) substances, a Food
Contact  Substance  Submission  is  required  [103-106].
Voluntary  GRAS  (Generally  Recognized  As  Safe)  status
may  be  sought.  FDA  CFSAN  (now  FDA  HFP)  provides

guidelines for animal testing, which are recommended but
not  required  for  regulatory  acceptance  [107]  (updated
2018). Therefore, non-animal testing methods may be used
to establish GRAS status or obtain premarket approval for
food ingredients.

(Table 1) contd.....
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Fig. (1). Features of Conventional and Alternative Genetic Toxicity Tests.

Substances  intended  for  addition  to  animal  feed  are
required to undergo testing (per CFR 21) or to reduce the
drug concentration present to a level that causes no harm
in  the  animal  (<1  in  1  million  cancer  risk)  or  in  the
population of consumers. Guidance has been issued by the
FDA  CVM  [108]  for  veterinary  drugs  administered  to
animals.

The FDA's CDRH recently initiated a new program to
qualify  medical  device  testing  methods  for  future  use,
known  as  Medical  Device  Development  Tools  (MDDT)
[109]. A NAM can become qualified under the process and
be  deemed  fit  for  purpose  under  that  context  of  use  in
future  submissions.  If  a  NAM  is  not  pre-qualified,  then
biocompatibility testing is performed to identify genotoxic
chemicals in medical devices and may include more than
one of OECD 471 (Ames test), 476 (mouse lymphoma gene
mutation  assay),  473  (in  vitro  chromosomal  aberration
assay),  or  487  (in  vitro  micronucleus  assay),  which  are
traditional in vitro methods.

ISTAND  (Innovative  Science  and  Technology
Approaches  for  New  Drugs)  is  a  pilot  program  of  the
FDA's  CDER,  intended  to  qualify  innovative  drug
development  tools,  including  NAMs.  Unfortunately,  to
date,  no  methods  have  been  qualified.  However,  several
are  under  consideration,  including  organ-on-a-chip
technology, AI-based digital health technology, and an off-
target protein binding assessment tool. The FDA's CDER
accepts  the  transgenic  mouse  six-month  assay  as  one

species in its requirement for two rodent carcinogenicity
bioassays, thereby reducing the total time on test for mice
and  the  number  of  animals.  Guidance  from  the  FDA’s
CDER  on  Carcinogenicity  Testing  of  Pharmaceuticals
states  that  in  certain  circumstances,  a  2-year  rat
carcinogenicity  assay  may  not  be  necessary,  using  the
“Weight  of  Evidence”  [WoE]  approach  [110].  The  FDA
clarified that it does not require the use of animal tests for
new  drug  applications.  However,  it  acknowledges  that
there is currently no acceptable alternative available for
chronic  toxicology  testing  (FDA  Modernization  Act  2.0,
Dec.  29,  2022).  It  clarifies  that  data  from  cell-based
assays, bioprinted models, organs-on-a-chip, and computer
models can be added to new drug applications. Recently,
the  Commissioner  announced  that  ELSA,  FDA’s  AI  tool,
will  be  used  to  reduce  the  time  required  for  the
application process, and other changes, such as the use of
test  results  and  determinations  from  other  international
agencies, as well as updates to GRAS, are forthcoming.

Thus,  genotoxicity  testing  remains  an  essential
component  of  U.S.  preclinical  pharmaceutical  safety
evaluation. Investigational New Drug applications require
an  in  vitro  mutagenicity  assay  (OECD  471),  an  in  vivo
study  for  mitotic/chromosomal  damage  (Micronucleus
assay,  OECD  474),  and  the  Comet  Assay  for  DNA
fragmentation  (OECD  489).  However,  organs-on-chips
have the potential to replace all three of these tests, such
as  the  3D  Skin  Comet  Assay  or  the  liver-on-chip  with
human  lymphoblastoid  (TK6)  cells  [111]  or  the  3D  skin
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model  (EpiDerm® Model),  which may be combined with
the micronucleus assay [112] in RS MN. For any genetic
toxicity  testing  strategy,  tests  should  include  possible
mechanisms  of  genotoxicity,  such  as  genetic  mutations
and clastogenic and aneugenic chromosomal aberrations
[113].

Recent  collaborations  to  incorporate  non-animal
testing (Tox21, EuToxRisk, Partnership for the Assessment
of  Risks  from  Chemicals  (PARC),  ONTOX,  CAAT,
RiskHunt3R,  3Rs  Collaborative,  NC3Rs,  and  MPS)  are
gaining  momentum  and  include  international
collaboratives  aiming  to  validate  and  harmonize  in  vitro
alternative  test  methods  (International  Cooperation  on
Alternative Test Methods (ICATM), the European Centre
for  the  Validation  of  Alternative  Methods  (ECVAM),  the
Japanese Centre for the Validation of Alternative Methods
(JacVAM),  and  the  Interagency  Coordinating  Committee
on the Validation of Alternative Methods (ICCVAM)). The
establishment  of  Health  Canada’s  New  Substances
Assessment  and  Control  Bureau  is  also  expected  to
accelerate  acceptance  of  NAMs  for  genetic  toxicity
testing.  The  American  Society  for  Cellular  and
Computational Toxicology (ASCCT) works closely with the
European  Society  of  Toxicology  In  Vitro  (ESTIV),  and
recently,  the  SAAOP  (Society  for  the  Advancement  of
Adverse  Outcome  Pathways)  has  affiliated  with
ASCCT/ESTIV.

Often,  the  aim  is  to  demonstrate  that  non-animal
testing methodologies produce results at least as good as
those  of  animal  testing  methods,  which  assumes  that
animal testing methods yield good results. However, it is
now acknowledged that they do not yield the best results
and often present a confusing patchwork of different study
conditions and results, with poor specificity and sensitivity
to humans. Therefore, the objective of non-animal testing
strategies  has  evolved  into  demonstrating  that  they  can
correctly categorize a result as ‘toxic’ or ‘non-toxic’, while
admittedly  not  yet  being  able  to  accurately  address  the
middle ground of ‘some toxicity’. For genotoxicity, the aim
is  to  correctly  discriminate  the  positively  genotoxic
carcinogens from the non-genotoxic ones, and if possible,
delineate the MOA or even MIE.

An  important  final  step  in  the  process  of  a  purely  in
vitro  genotoxic  test  is  quantitative  in  vitro  to  in  vivo
extrapolation  (qIVIVE),  which  considers  absorption,
distribution,  metabolism,  and  elimination  (ADME)  to
derive a human-relevant Margin of Exposure (MOE). The
administered  equivalent  dose  (AED)  in  mg/kg  body
weight/day  is  determined,  which  is  the  estimated  dose
required  to  reach  a  steady-state  concentration  in  the
plasma equal to the concentration inducing genotoxicity in
the in vitro assay [114]. Later, a case study was conducted
on 31 reference chemicals and determined that 20 of the
31  qIVIVE-derived  points  of  departure  (PODs)  were
considered  health  protective  when  compared  against  in
vivo-derived PODs.

Other researchers [115] have studied the derivation of
a  threshold  of  genotoxicity  for  known  genotoxic

substances by using dose-response modeling to determine
a  margin  of  exposure  (MOE)  value  or  Health-based
guidance  values  (HBGVs).  Then,  using  the  Benchmark
Dose (BMD) approach, which incorporates physiologically
based  pharmacokinetic  (PBPK)  modeling,  a  point  of
departure  (POD)  is  determined,  and  uncertainty  factors
(UFs)  are  employed  to  quantitatively  estimate  the
tolerable  daily,  weekly,  etc.,  intake.  This  approach
eschews  the  previously  mentioned  LNT concept,  instead
acknowledging  that  substances  often  do  demonstrate
dose-response  behavior  indicative  of  a  threshold  below
which risk is reduced to a level that will not cause cancer
from  a  lifetime  of  exposure.  Further  refinement  of  this
approach  using  Bayesian  methods  [116]  is  expected  to
provide improvements over the more traditional approach
of  estimating  UFs.  Informed  priors  are  prior  knowledge
that  is  incorporated into Bayesian modeling approaches,
resulting in the derivation of probability distributions. The
latter are ranges related to the probability of an outcome
occurring, rather than simplistic point estimates. Utility is
further  enhanced  by  the  ability  of  programs  to  compare
multiple modeling approaches and choose among them, or
incorporate  the  results  of  more  than  one  (model
averaging),  for  more  precise  and  accurate  model
estimation.

ONTOX has published a protocol for an AI-supported
case study that will apply a standardized approach to risk
assessment,  using  the  ONTOX  toolbox  [117].  This  is  in
support  of  a  new project  (‘Ontology-driven  and  artificial
intelligence-based  repeated  dose  toxicity  testing  of
chemicals for next generation risk assessment’) under the
EU  program  Horizon  2020.  The  objective  is  to  create  a
generic  protocol  applicable  to  any  chemical  for
determining  the  effects  of  a  systemic  repeated-dose
toxicity experiment, entirely eliminating the need for new
animal experiments.

This  proof-of-concept protocol  focuses on six  specific
NAMs  (liver  steatosis  and  cholestasis,  kidney  tubular
necrosis and crystallopathy, and fetal neural tube closure
and  cognitive  function  defects)  as  an  example,  using  a
well-known chemical  (PFOA)  that  has  already  generated
substantial  data.  Each  NAM  will  have  a  computational
system  based  on  AI.  The  AI  model  will  be  informed  by
biological,  mechanistic,  toxicological,  epidemiological,
physico-chemical, and kinetic data. Other elements of the
system  will  include  physiological  maps,  qAOPs,  and
ontology frameworks/evidence maps. Where information is
lacking,  in  vitro  and in  silico  testing will  be undertaken.
Finally,  the  project  will  collaborate  with  industry  and
regulatory  stakeholders  to  qualify  it  for  regulatory  and
commercial use.

Probabilistic Risk Assessment (PRA) will be carried out
using  the  APROBA  tool  [116,  118],  incorporating
benchmark  dose  calculations  for  BMDL and  BMDU,  and
utilizing  a  workflow  for  PRA  [119]  with  PBK  models,
thereby yielding a POD for risk assessment. Physiological
maps will inform and enhance translation from in vitro to
human  endpoints.  (Fig.  2)  depicts  an  example  workflow
that could be employed.
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Fig. (2). Planned probabilistic workflow in ONTOX (reprinted with permission of ONTOX).

The workflow differs from the qIVIVE process that has
been  developed  lately,  which  uses  reverse  dosimetry.
Instead,  it  starts  from the external  (measured)  dose and
then proceeds to modeling and qIVIVE and thence to risk
assessment.  Using  a  distribution  of  external
concentrations  from  real-world  data  to  model
probabilistically  with  PBK,  a  distribution  of  target  site
concentrations  will  be  derived.  The  result  will  be  a
distribution of internal concentrations in the tissues (liver,
kidney,  brain)  to  be  studied,  which  will  be  compared  to
dose-response  curves  from  in  vitro  studies,  and  their
ranges of agreement (or disagreement) will be noted. Raw
dose-response  curve  data  will  be  transformed  using  in
silico models of in vitro kinetics. This method was chosen
because,  in  reverse  dosimetry,  each  benchmark
concentration  derived  involves  multiple  simulations,
whereas  in  the  forward  direction,  simulations  are  only
performed  once.

The  specific  work  products  to  be  developed  include:
individual external exposure assessments, population-level
external exposure analysis, PBK modeling, and qIVIVE for
internal  exposure.  Additionally,  the  project  will  involve
identifying human hazard data and animal studies, as well
as  in  vitro  and  in  silico  predictions  using  QSAR,  SAR,
similarity-based  prediction  with  a  supervised-learning
neural  network  model  leveraging  deep  learning,  a
property transformer AI model, and docking simulations.
Finally, in vitro and in silico data will be incorporated from
experiments  to  be  performed  for  each  endpoint.  Animal

hazard characterization will serve as the model approach
for  applying  in  vitro  data  to  human  hazard
characterization.  Risk  characterization  will  determine  a
human MOE by  comparing  the  distributions  of  exposure
and hazard, and sampling MOEs, to establish a probability
distribution  of  MOEs.  The  project  promises  to  be
groundbreaking in that it will deliver a generic solution for
probabilistic  risk  assessment  of  any  chemical  entity,
without  requiring  data  from  in  vivo  studies,  which  can
serve as a model for general adoption and harmonization
among scientists.

Several  researchers  have  recently  published
informative  case  studies  using  qIVIVE for  liver  steatosis
from  dietary  exposure  to  Imazalil  [120],  assessment  of
non-combustible  next-generation  product  aerosols  [121],
and coumarin in cosmetic products [122], among others.
These  studies  illustrate  these  principles  in  practice  in
detail.

Elimination of the cancer bioassay has been proposed
for  pesticide registration.  Through a WoE approach that
incorporates  acute,  subchronic,  developmental,  and
reproductive  toxicity  (DART)  assays  with  evidence  of
hormone  perturbation,  immune  suppression,  genetic
toxicity,  and  mechanistic  studies  supporting  a  proposed
MOA  [123,  124],  agrochemical  sponsors  are  seeking
waivers from EPA to avoid the cumbersome, lengthy, and
often uninformative rodent carcinogenicity bioassay. The
Weight  of  Evidence  (WoE)  method  integrates  known
information  (key  chemical  properties,  planned  uses,  and
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estimated  exposures)  with  absorption,  distribution,
metabolism, and elimination (ADME), toxicokinetics (TK),
toxicity (mentioned above), and information from related
chemicals  (‘read  across’)  to  derive  PODs  for  risk
assessments.

In this scenario, genetic toxicity is still included in the
data  submitted  in  the  regulatory  approval  package;
however,  as  genetic  toxicity  testing  moves  further  away
from  in  vivo  testing  due  to  the  exigencies  of  time,
materials,  and  the  possibilities  afforded  by  new
technologies,  fewer  animal  lives  will  be  wasted.

CONCLUSION
In this review, a variety of NAMs (In vitro (yeast) DNA

deletion (DEL) recombination assay,  3D RS/RSMN, Bhas
42  CTA,  ToxTracker,  MultiFlow® and  MicroFlow® DNA
Damage Assays, TGx-DDI transcriptomic biomarker assay,
MutaMouse™  Assays),  are  discussed  for  studying  the
genetic toxicity of chemical substances. Their principles,
methods,  and  the  strengths  and  weaknesses  of  each,
including progress towards OECD acceptance, sensitivity,
and  specificity,  are  discussed.  In  Table  1,  the  standard
tests  and  NAMs  are  presented,  along  with  their
applicability, assay length, regulatory status, references,
strengths, and weaknesses. Fig. 1 illustrates a simplified
comparison of various aspects of NAMs.

In  a  previous  study  (Part  I),  the  concept  of  LNT
(‘linearity  at  low  dose’)  was  introduced,  influencing
subsequent  research  and  the  development  of  genetic
toxicity  testing,  and  eventually  becoming  the  accepted
paradigm.  While  these  requirements  have  advanced  the
science  and  provided  substantial  data  confirming  the
genotoxicity  or  mutational  capability  of  substances,  they
have  also  hindered  progress  towards  non-animal  testing
methods,  a  long-standing  goal  in  toxicology.  However,
with advances in knowledge and technologies, such as the
qIVIVE paradigm and the WoE approach, the realization of
this  goal  is  now  possible.  It  remains  for  scientists  to
implement  these  methods.
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LIST OF ABBREVIATIONS

ADME = Absorption, Distribution, Metabolism,
Excretion

AED = Administered Equivalent Dose
AI = Artificial Intelligence
ANN = Artificial Neural Network
AO = Adverse Outcome
AOPs = Adverse Outcome Pathways
ASCCT = American Society for Cellular and

Computational Toxicology

AUC = Area Under the Curve
BER = Bioactivity Exposure Ratio
Bhas 42 CTA = Bhas 42 Cell Transformation Assay
BMC = Benchmark Concentration Modeling
BMD = Benchmark Dose Modeling
BMDL = Benchmark Dose Lower Limit
BMDU = Benchmark Dose Upper Limit
CAAT = Center for Alternatives to Animal

Testing (Johns Hopkins University)
CFR = Code of Federal Regulations
CNN = Convolutional Neural Network
CRISPR-Cas9 = Clustered Regularly Interspaced Short

Palindromic Repeats (Gene Editing)
CYP1A1 = Cytochrome P450 1A1
DART = Developmental and Reproductive

Toxicity
DEL = Deletion
ECVAM = European Union Reference Laboratory

for Alternatives to Animal Testing
ESTIV = European Society for Toxicology In

Vitro
GRAS = Generally Recognized as Safe
GST = Glutathione S-Transferase
HBEC = Human Bronchial Epithelial Cells
HBGVs = Health-Based Guidance Values
HPLC = High Performance Liquid

Chromatography
IATA = Integrated Approaches to Testing and

Assessment
ICATM = International Cooperation on

Alternative Test Methods
ICCVAM = Interagency Coordinating Committee on

the Validation of Alternative Methods
ICH = International Conference on

Harmonization
ISTAND = Innovative Science and Technology

Approaches for New Drugs
JacVAM = Japanese Centre for the Validation of

Alternative Methods
LNT = Linearity at Low Dose
LR = Logistic Regression
MAD = Mutual Acceptance of Data
MDDT = Medical Device Development Tools
mESC = Mouse Embryonic Stem Cells
MIE = Molecular Initiating Event
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ML = Machine Learning
MN = Micronucleus Test
MOAs = Mechanisms of Action
MOE = Margin of Exposure
MPS = Microphysiological Society
MS = Mass Spectrometry
NAMs = New Approach Methodologies
NC3Rs = National Centre for the Replacement,

Refinement, and Reduction of Animals
in Research (UK-based)

NHEK = Normal Human Epidermal
Keratinocytes

OECD = Organization for Economic Cooperation
& Development

OMICS = Proteomics, Metabolomics, Genomics,
Transcriptomics

ONTOX = EU-funded Horizon 2020 Project on
Toxicity Testing

PARC = Partnership for the Assessment of Risks
from Chemicals

PBPK = Physiologically Based Pharmacokinetic
Modeling

PBTK = Physiologically Based Toxicokinetic
Modeling

PCR = Polymerase Chain Reaction
PFOA = Perfluorooctanoic Acid
PGAL = Phenyl-β-Galactosidase
PH = Primary Hepatocyte
PODs = Points of Departure
PRA = Probabilistic Risk Assessment
qAOPs = Quantitative Adverse Outcome

Pathways
qIVIVE = Quantitative In Vitro to In Vivo

Extrapolation
QSAR = Quantitative Structure-Activity

Relationships
REACH = Registration, Evaluation, Authorization,

and Restriction of Chemicals
RF = Random Forest
RiskHunt3R = Risk Assessment of Chemicals

Integrating Human-Centric Next
Generation Testing Strategies (Horizon
2020 Project)

RS = Reconstructed Skin
RSMN = Reconstructed Skin Micronucleus Assay
SAAOP = Society for the Advancement of Adverse

Outcome Pathways

SAR = Structure-Activity Relationships
SCE = Sister Chromatid Exchange
TG = Test Guideline
TPA = 12-O-Tetradecanoyl-Phorbol-13-Acetate
UF = Uncertainty Factors
WoE = Weight of Evidence
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