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Abstract:

The field of toxicology is moving forward rapidly, and the trend is toward non-animal testing. In terms of genetic
toxicity testing, there are many accepted OECD test guidelines reliant on in vivo animal models. In the interest of
providing a complete picture of the methods available for both animal-derived and non-animal genetic toxicity testing,
Part I in the series discusses the existing short-term accepted test methodologies, while Part II examines available
New Approach Methodologies (NAMs). The advantages and disadvantages of the current methodologies are
discussed here, while those of new methodologies and the current regulatory landscape relative to them are reserved
for discussion in Part II.
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1. INTRODUCTION

Genotoxicity refers to the ability of a substance to
damage genetic material, while mutagenicity refers to the
permanent and transmissible variations in the amount or
structure of genetic material, leading to increased
mutational frequency [1]. Carcinogens may operate by
genetic (heritable via the damage of genetic material) or
epigenetic (somatically heritable, such as histone
modification) mechanisms. Central to the theory of
carcinogenesis is that mutations, under the right
circumstances, cause cancer. It has been theorized that
even one single mutation (“one hit”) may cause cancer,
and hence ultimately be fatal.

The origins of the “one hit” model can be traced to the
‘linearity at low-dose’ concept (LNT), also referred to as
linear low-dose extrapolation, in ionizing radiation-induced
mutation. This concept alleges that there is no lowest safe
dose for carcinogens (no ‘threshold’ of carcinogenicity)
because any random mutational event could result in

Revised: June 19, 2025
Accepted: July 01, 2025
Published: November 21, 2025

(@FIOH

Send Orders for Reprints to
reprints@benthamscience.net

cancer. As detailed by Calabrese et al. [2-7], from the
1920s onward, physicists and radiation geneticists
developed and integrated the LNT theory, and it became
accepted science. Originally, this theory asserted that
mutational events were proportional to the amount of
energy absorbed, driving the evolution of biological
organisms. Developed further through work with
Drosophila, this concept replaced the previous ‘gold
standard’ threshold dose-response theory long accepted in
medicine and physiology. By 1958, the LNT theory was
generalized to somatic cells and cancer risk assessment by
the U.S. National Committee (the National Committee on
Radiation Protection [NCRPM] [8]) and quickly adopted
nationally and internationally by various committees [4],
eventually resulting in adoption by the U.S. Safe Drinking
Water Committee (1977) of the National Academy of
Science, who extended the BEAR/BEIR committee linear
dose-response risk assessment model to chemical
carcinogens. It was subsequently adopted by the US EPA
and the US FDA in 1977 for animal carcinogen drug
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residues (U.S. CFR 21). Thus, the search was launched for
genotoxic compounds, and several different assays were
introduced to test for the genotoxicity of various chemical
and biological agents. The Ames Test [9], is considered the
bedrock of testing. This test for mutational histidine
revertants is carried out in four or more Salmonella
bacterial strains engineered to be more susceptible to
specific types of mutants, enhancing the sensitivity of the
test. An E. coli strain was also developed. The Ames Assay,
Micronucleus Test, Chromosomal Aberration Assay, Comet
Assay, Thymidine Kinase Assay, and the more recent,
indirect ROSGlo Assay are now familiar to every genetic
toxicologist. Advantages include in vitro accessibility,
relatively low cost, and speed. The advent of in vitro/ex
vivo genetox testing accelerated the acquisition of
knowledge about the genotoxic potential of hundreds to
thousands of substances, both natural and anthropogenic.
In some instances, this caused controversy because the
substances were not anticipated to be hazardous (such as
char-cooked meats or tires [10]). In other cases, the tests
provided proof of the mutagenic character of substances
that had long eluded cancer biologists, such as cigarette
smoke condensate, for which animal models had proved
problematic [11]. The strengths and weaknesses of the
standard short-term genetic toxicity tests currently in use
are discussed in Part I of this review.

2. METHODS

The literature was searched using the following
strings:

“Short-term” AND genetox* AND testing AND method*

Genotox* AND testing AND conventional AND method*

Genotox* AND testing AND conventional AND
limitation*,

The following phrases:

“Conventional  short-term

methods”

“Limitations of conventional short-term genotoxicity
testing”,

genotoxicity  testing

Using Google, Google Scholar, PubMed, ResearchGate,
ScienceDirect.com, Wiley Online Library, ACS
Publications, and U.S. Food and Drug Administration.

Then the snowball technique was used to build on the
results obtained. ‘Conventional Short-Term Assays’ were
defined as those non-chronic or non-sub-chronic assays
that have been in use for at least 20 years and are
accepted by OECD or EURL/ECVAM and have been
subjected to validation through multi-laboratory and
various other testing strategies.

The results were sorted according to date of
publication and relevancy, and any duplicates were
discarded. The methods were defined as either OECD TGs,
EURL/ECVAM, or non-OECD/EURL/ECVAM  TGs.
Publications about other tests were not included.

Results were then categorized into major
methodologies. Methods that were not described as (gold)
standard/standardized, frequently employed, or having
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been accepted, validated, and improved
longstanding usage, were not included.

through

The remaining references were analyzed for their
content and included for discussion if they described the
advantages or disadvantages of the test method. Finally,
they were compared with the specified TG to verify
accuracy at specific points.

2.1. Conventional Short-Term Assays: Shortcomings
and Strengths

The following conventional short-term genetic toxicity
assays are briefly compared and contrasted in Table 1 .

2.1.1. Ames Test (OECD 471)

2.1.1.1. Assay Principle & Applicability

The Ames Assay was the first genetic toxicity test to be
developed, and it is the ‘gold standard’ test for classifying
a chemical substance as genotoxic. Since the test uses
prokaryotic (bacterial) cells, direct concordance with
human carcinogenesis, or even mutagenesis, is not
possible. It is assumed that if a substance is mutagenic in
bacteria, it is likely to be mutagenic in mammals as well.
However, as pointed out in the test guideline (TG) OECD
471 [12], bacterial cells have different uptake, meta-
bolism, chromosomal structure, and DNA repair processes
than mammalian cells. Each test substance should be
evaluated in terms of known Toxicokinetics (TK) and
metabolism, where possible.

2.1.1.1.2. Method and Suggested Tips for Success

Due to the inherent differences between bacterial and
mammalian cellular systems, some compounds are not
suitable for testing in the Ames Assay. These include some
antibiotics (because they interfere with bacterial cell
systems) and some topoisomerase inhibitors/nucleoside
analogues (because they interfere with mammalian cell
systems). Indeed, there are mechanisms of carcinogenicity
that are considered non-genotoxic, such as oxidative stress
or epigenetic (i.e., histone modification) processes. Many
of these cannot be tested for in the Ames Assay (except for
several oxidative mutagens such as hydrogen peroxide and
other peroxides, X rays, bleomycin, neocarzinostatin,
streptonigrin, and other quinones and phenylhydrazine,
using the TA102 strain) [13]. To reduce the possibility of
false negative test results, the preincubation method is
considered appropriate for derivatives of aliphatic N-
nitroso compounds or alkaloids [14-16], or for azo dyes the
Prival method [17], and discussed in Gatehouse et al. [18].
Importantly, some chemicals have specific properties
rendering them unsuitable for testing with Ames Assays
(benzene, urethane, procarbazine, salicylazosulfapyridine),
and there may be others [19, 20]. For nanomaterials, the
inability to permeate the bacterial cell wall is expected to
interfere with obtaining test results.

An exogenous source of metabolic activation (typically
rat S9 liver extract) is required, and it is usual to include
+ and - S9 conditions to confirm whether the substance
requires metabolic activation to be mutagenic. Since
Guengerich et al. [21], different substances were known to
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suppress or induce CYP450s, and there have been studies
examining the effects of induction with Aroclor 1254 and
of differences between rat and human liver induction or
other organs, showing that induction is not uniform and
varies by orders of magnitude. Some CYP450s are
expressed less or not at all, depending on species, age,
and sex [22-27]. Human liver S9 is generally not
recommended for use due to its reduced sensitivity and
lack of concordance of enzymatic activity with the level of
mutational effect [28]. However, it could prove useful for
evaluating chemicals such as aromatic amines, which have
species-specific metabolic differences. It is important to
understand the system limitations (which CYP450s are
present and what is their usual induction in S9). Examples
exist of compounds that were negative in the Ames Assay
as usually performed but showed strong results in
variations of the test, which depended on the properties of
the test substance itself (e.g., Ochratoxin A) [22, 29]. An
enhanced Ames Test has been published that addresses
the reduced sensitivity of the Ames assay to N-
nitrosamines [30], which include substances found as
impurities in drugs containing a wide variety of functional
groups. The enhanced protocol should be used if the test
substance is an N-nitrosamine and does not initially test
positive in the standard Ames assay. Thomas et al. [31],
discusses the optimal selection criteria for accurate
detection of N-nitrosodimethylamine and N-nitrosodie-
thylamine.

2.1.1.3. Advantages and Disadvantages

Advantages of the test include relative ease of
performance, cost, and time. However, conflicting results
are sometimes obtained for several chemicals that may be
attributed to differences in DNA repair capacity or
metabolism among cell types or species used in metabolic
activation, bioavailability, or factors specific to the
mechanism/endpoint of the substance, resulting in false
negatives or positives [28, 29]. The former would appear
to be most critical for human health, although the latter
may be the most resource-intensive.

The Ames Assay does not eliminate animal testing
entirely because the S9 rat liver microsomal fraction and
the various cell lines that may be employed all originate
from vertebrate mammalian species. However, it can be
said to reduce the use of animals in toxicology testing by
an extraordinary degree, especially if a ‘negative’
compound is not perceived to require further testing in
vivo, or if a ‘positive’ compound is dropped from further
development due to the potential for carcinogenicity. Both
scenarios can mean substantial savings in effort, time, and
resources, as well as in animal lives.

2.1.2. Micronucleus Test (OECD 474, 475, 487)

2.1.2.1. Assay Principle & Applicability

The Micronucleus (MN) test is used to evaluate
clastogenic and aneugenic damage in vivo or in vitro. MN
is a widely accepted and validated assay that is covered
under the recently updated OECD TG 487 (in vitro; MNvit)
[32, 33], OECD 474 [34], OECD 475 [35], and FDA

Redbook [36] (in vivo). Micronuclei were first identified by
Howell and then Jolly [37, 38] and first used to identify
and quantify chromosomal damage by Evans et al. [39].
Others [40-48], as described below, went on to develop
and refine the principles and usage of the test. This assay
identifies chromosomal breakage or spindle disruption by
means of counting micronucleated cells (cells with an
extra, small or ‘micro-’ sized nucleus in addition to the
original nucleus), which were early on found to result from
folic acid and vitamin B deficiency, X-ray treatment, and
exposure to other mutagens like hydrogen peroxide. Such
cells were first identified in the bone marrow of fetal mice,
but later it was determined that peripheral blood
erythrocytes, and then other cell types (both human and
rodent), were also a suitable system for quantitating
micronuclei, which obviated the need to kill animals and
clearly would be an advantage in multiple dosing studies

2.1.2.2. Method and Suggested Tips for Success

The in vivo MN test (mammalian erythrocyte
micronucleus assay) detects chromosomal or spindle
disruption in erythrocytes sampled from bone marrow or
peripheral blood cells, typically of rodents [35, 37]. If the
collection of cells is from bone marrow, the amount of
information that can be collected will be limited to the
single collection time at the sacrifice of each treatment
group. If blood is used, the regimen can be more varied
with repeat dosing and multiple collection times. The
method is intensive in its use of animals (at least 5 animals
per group, multiple doses, potentially multiple animal
groups for different sacrifice times, concurrent TK groups,
potentially recovery groups, positive and negative control
groups, initial limit testing, and spare animals). Animals
may be treated once or twice within 24 hours, with blood
samples withdrawn 36 to 72 hours after the last dose.
Alternatively, they may be treated once per day for several
days, with samples collected 24 hours after the last
treatment (bone marrow) or 40 hours after the last
treatment (peripheral blood). At least 200 erythrocytes
should be counted for bone marrow and 1000 for
peripheral blood, and the ratio of immature to total red
blood cells should be determined for each animal. At least
2000 immature erythrocytes per animal are scored for
micronuclei, with the potential to score mature
erythrocytes for more information (especially if animals
are treated continuously for four or more weeks). Further
quality control/assurance measures can be found in
Howell and OECD TG 475 [35, 371.

OECD TG 487 [33], the MNvit test (micronucleus in
vitro) is distinct from the in vivo micronucleus test [49].
Chromosomal damage, resulting from the formation of
acentric chromosomal fragments or whole chromosomes
that fail to migrate to the poles during anaphase, is
detected in cells treated in vitro. Cells must have
undergone one cell division during or after test substance
exposure. The resulting micronuclei are easily visualized
and counted manually or by automated means (e.g., FACS
or cell sorting, image analysis, laser scanning cytometry)
of at least 2000 cells. Chromosomal aberrations scored in
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metaphase differ from MNvit scoring because the damage
may not transfer to daughter cells, whereas anaphase
scored chromosomal damage indicates that the damage
will transfer permanently.

The addition of Cytochalasin B (CytoB) prior to mitosis
prevents the completion of cytokinesis after nuclear
division, resulting in binucleate cells. This characteristic is
useful for counting micronuclei in cells that have
undergone only one mitotic event. However, the use of
CytoB is not required if it can be shown that cells have
undergone one mitosis, except for when human
lymphocytes are used.

This is because cell cycle times vary among donors,
and not all lymphocytes respond to Phytohaemagglutinin
(PHA) stimulation, which is a requirement for the
activation of proliferation in lymphocytes. Further, cells
are not typically treated with CytoB if flow cytometry is
used for quantitation [33].

Different metrics (relative increase in cell count [RICC]
and relative population doubling [RPD] when CytoB is not
used, cytokinesis block proliferation index [CBPI] or
Replication Index [RI] when CytoB is used) are used to
quantify cytotoxicity. Therefore, for cells not treated with
CytoB, RICC or RPD should be used to inform the mitotic
status. In either case, cytotoxicity should be quantified
with and without metabolic activation during actual
testing and may be as well during the preliminary phase of
dose selection [33]. All the key stipulations that are
present in the Ames assay apply to MNvit as well, such as
the inclusion of multiple exposure concentrations (at least
3) plus positive and negative controls, limitations on the
amount of cytotoxicity (the highest cytotoxicity should
achieve 55 * 5%), and control of pH, osmolality, and
solubility are among them. Assay conditions should
include 3-6 hr exposure to test chemical =£S9, removal of
test substance, followed by counting after 1.5 - 2.0 normal
cell lengths from the beginning of treatment. To
thoroughly rule out a negative result, conditions should
also include a continuous exposure without S9 for 1.5 - 2.0
cell lengths. The conditions can be carried out
sequentially, stopping after the first positive result. The
same difficulties may arise: capturing the optimal active
range of the suspected genetic toxicant, dealing with
insoluble substances, interacting with cell culture or other
reagents, karyotypic instability, and the background
frequency of micronuclei are some examples. Further, the
origin of the cells, their intrinsic p53 status, and their DNA
damage repair capabilities should be considered. All
rigorous cell culture quality control measures should be
followed, as should the recommendations for the specific
cell types that are used [33].

2.1.2.3. Advantages and Disadvantages

Quantitation of micronuclei in either immature
nucleated or enucleated mature red blood cells is
relatively simple, as is interpretation in most cases [32].
The in vivo MN assay is superior in that it encompasses
metabolism, PK, and DNA-repair processes of the whole
organism during the treatment. However, the variations in
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these parameters among organisms, coupled with the
requirement that the test substance reach the bone
marrow and interact with the blood-forming elements to
see a positive result, are limiting.

Advantages of the MNvit assay are its robustness and
validity in many cell types, human or other mammalian
peripheral blood lymphocytes [40, 44, 46, 50], CHO, V79,
CHL/IU, L5178Y, or human TK6 [29, 50-62], as endorsed
by OECD (2023), SFTG [29, 50-53], IWGT [63, 64], ECVAM
[65, 66], and ESAC [67].Further, the method can be
augmented by the addition of immunochemical labeling of
kinetochores or the use of FISH (fluorescence in situ
hybridization) methods to label centromeres or telomeres
[44, 47, 64, 68-64]. These methods increase the amount of
information gleaned from the experiments, allowing
positive results to identify the mechanism of damage as
clastogenic or aneugenic. The method allows for the
identification of aneugens that are otherwise difficult to
study (OECD 473) but cannot differentiate substances that
induce changes in ploidy or chromosome number, without
the use of FISH [34].

In identifying positive genetic toxicants, the success of
the micronucleus test is considered comparable to that of
the Comet and yH2AX phosphorylation assays. It is
specific to certain types of cellular damage. However, a
major shortcoming has been identified [77]: 30 to 40% of
compounds that are negative in both the in vivo MN assay
and the ToxTracker assay are positive in the in vitro MN
assay, possibly due to oxidative stress generated by the
compound rather than direct DNA damage. Additionally,
the question arises whether the toxicant or its
metabolite(s) reach the target tissue in vivo, inferring false
negative results, or whether false positives have occurred,
causing systemic or generalized toxicity from excessively
high doses. Therefore, caution is advised in the
interpretation of MN results, and such results are best
used as part of an in vitro and/or in vivo battery of tests.

2.1.3. In Vitro Mammalian Cell Chromosomal
Aberration Test (OECD 473)

2.1.3.1. Assay Principle and Applicability

This assay was originally adopted in 1983 and has
undergone periodic revision and updates [78]. It is
intended for the detection of clastogens causing
chromosomal aberrations and does not detect aneugens.

2.1.3.2. Method & Suggested Tips for Success

Human or rodent cell lines or primary cells that have a
stable karyotype and a low rate of spontaneous
chromosomal aberration should be used with metabolic
activation unless they are known to be competent. Cells
are treated + S9 with the test substance for 3-6 hours or
continuously exposed for 1.5 cell cycles and treated 1 to 3
hours prior to harvest with Colcemid to arrest the cell
cycle at metaphase, treated hypotonically, fixed, stained,
and the fixed preparations microscopically scored for the
presence of chromatid- and chromosomal aberrations,
which are recorded separately. Polyploidy and
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endoreduplication are recorded. At least 300 metaphases
are scored to satisfy statistical requirements unless there
is a high number of cells with chromosomal aberrations
(test substance is clearly positive). The methods for this
assay differ from MNvit only in that Colcemid is used
instead of CytoB. All other guidelines and recommen-
dations mentioned above for the MN assay also apply [78].
Advantages and Disadvantages

This assay is a staple in genetic toxicity testing and is
simple procedurally and quantitatively, but the test cannot
detect aneugens as polyploidy alone does not distinguish
aneugens and may indicate cell cycle perturbation or
cytotoxicity only. Additionally, the test requires metabolic
activation and requires metaphase arrest.

2.1.4. Comet Assay (OECD 489)

2.1.4.1. Assay Principle and Applicability

Originally developed by Cook et al. [79] and later by
Ostling [80], the comet assay (OECD 489) [81] is also
known as single-cell gel electrophoresis (SCGE) and the
alkaline comet assay. It is used to measure the occurrence
of single-strand breaks (SB) and alkali-labile sites (ALS) in
eukaryotic DNA [82, 83], which are pro-mutagenic. Not
only the presence or absence of DNA damage, but the type
and amount of damage can be identified and quantified
[83]. For instance, by the introduction of bacterial lesion-
specific endonucleases, it can be determined whether UV-
induced pyrimidine dimers, oxidized bases, or alkylation
damage has occurred [82, 84]. Specific bacterial enzymes
used are endonuclease II (oxidized pyrimidines),
formamidopyrimidine DNA glycosylase for 8-oxoguanine
and other purines, T4 endonuclease V for UV-induced
cyclobutene pyrimidine dimers, or Alk A for 3-
methyladenine sites. The endonucleases act on the
accessible DNA sites, thus the amount of activity over time
is a direct measure of pre-existing damage [82].

2.1.4.2. Method and Suggested Tips for Success

The rate of strand break repair can be measured by
adding damaged comet tail material to cell isolates and
monitoring the repair over time, as a measure of the cells’
reparative capacity. Cells (either from disaggregated
tissue, circulating lymphocytes, or cells in culture; plant
cells may be used if finely minced) are embedded in
agarose, placed on a plain glass slide, and immersed in a
lysis buffer, which denatures the DNA (i.e., releasing
supercoils). Finally, the cells are subjected to
electrophoresis, and the images are analyzed under
fluorescence microscopy [82-84]. Ethidium Bromide or
DAPI, both of which bind strongly to double-stranded
DNA, are commonly used to visualize comets. Acridine
orange can differentiate single-stranded (red) from
double-stranded (yellow-green) DNA. The intensity of the
fluorescence of the comet DNA in the ‘tail’ is linearly
correlated with the amount of damaged DNA. The assay
has been commercialized (for instance, R & D Systems).

The lysis conditions can be adjusted to scan for single-
vs. double-strand breaks (neutral conditions for double-
stranded breaks, alkaline for smaller amounts of damage,

including both single- and double-stranded breaks).
Software is available to analyze the strand break results,
but the human eye can readily visualize and classify the
level of severity of a strand break as accurately, if not as
efficiently, as machine-aided classification [82-84].

Some common misconceptions have evolved, for
instance, that a high pH is needed to detect single strand
breaks. The use of alkali increases the visibility of comet
tails and the types of damage detected but not the
sensitivity of the assay. Tail intensity increases
accordingly. Other variations on the comet theme include
bromodeoxyuridine (BrDU) labeling to detect DNA breaks
associated with replicating DNA in S-phase. The BrDU
label will show up in the comet tail, versus the head,
which would instead indicate post-replicative labeled DNA.
Another nuance is to inhibit DNA synthesis using, for
instance, hydroxyurea, cytosine arabinoside, or
aphidicolin, blocking repair synthesis and resulting in the
accumulation of breaks over time. In peripheral
lymphocytes, which are non-dividing, breaks increase over
time without the use of inhibitors as the rate of repair is
naturally slow. FISH can be used to identify specific areas
of chromosomes, centromeres, telomeres, and single-copy
genes that are damaged or to monitor gene-specific repair
rates [82].

It should not be assumed that the cells in the comet
tail are apoptotic; damaged DNA can be repaired while
apoptosis is irreversible. According to Collins [82], some
apurinic (AP) sites might not be fully converted to strand
breaks, although strong alkali conditions are likely to
convert more of them than weaker conditions might,
leading to the supposition that weaker conditions limit
sensitivity. Some caution is advised in interpreting results,
as the intensity of staining is likely cell cycle phase
dependent, as the total fluorescence signal reflects DNA
content. Cells on a slide should be limited to about 2 x 10*
to prevent overlapping comets that are impossible to
count. Additionally, signal saturation may occur, leading to
an underestimation of damaged bases. This effect can be
checked for by performing a dose-response curve. There
should be no deviation from linearity at the highest
exposure concentration. Air bubbles and edges should be
avoided. About 50 comets per slide should be quantified. It
should be noted that strand breaks typically occur (in well-
studied X-ray experiments) only about 2.5 times per 10°
Dalton, that is, once every 160 um. Consequently, it is not
possible to determine fragment length in this assay as in
conventional DNA electrophoresis. DNA in the tail does
not migrate by fragment length [82-84]. Quality control in
the assay should be determined by comparing with a well-
known standard, either as supplied by the manufacturer or
through y- or x-irradiated controls [85]. As in any well-
planned study, the number of samples needed should be
determined a priori by a Power Analysis. Preliminary
studies can help determine the intra- and inter-individual
variability that needs to be overcome to separate the true
result from background noise. A good idea is to establish
and maintain a pool of frozen cells with known damage
under controlled conditions, which can be used as
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laboratory controls in any experiment. Cells can be frozen
at -80°C with dimethyl sulfoxide (DMSO) and with or
without fetal bovine serum (FBS) [82]. Checking the
viability of cells using trypan blue can be misleading, as
blue cells may yet be viable notwithstanding damaged cell
membranes. Thus, the optimal condition of a cell for use in
the comet assay is for untreated cells to show 10% or less
of DNA in the comet tail, indicating they are undamaged.
After analysis, slides can be dried and stored indefinitely
on plain glass slides [82].

2.1.4.3. Advantages and Disadvantages

2.1.4.3.1. The Method Is Simple, Relatively Rapid,
And Inexpensive To Perform.

Comet assays are a dependable measure of DNA
damage; however, there are nuances to the method and
the results are sometimes over-interpreted. As with the
Ames assay, the comet assay depends initially on
biological material that must be obtained from living
organisms. Perpetually cultured cells can be used,
decreasing the use of live organisms, but they are subject
to deterioration and deviations over time and must be
stringently checked to ensure they maintain their cellular
and genomic identity and integrity. Hela cells are a
common source of cross-contamination through
volatilization and have been found to contaminate many
cell lines [86]. Some estimates have even put the number
of misidentified or contaminated cell lines as high as 36
percent [86, 87].

2.1.5. Mouse Lymphoma (MLA) and Thymidine
Kinase Assay (TK6) (OECD 490)

2.1.5.1. Assay Principle and Applicability

These assays have been widely used since the 1980’s
and are described under OECD Test Guideline(TG) 490
[88], (superseded TG 476 of 1984, 1997), which was
written for the MLA assay but since it uses the TK locus it
covers both assays, which have a similar endpoint
although the two cell lines are not interchangeable
[L5178Y mouse lymphoma cell line (L5178Y), TK6 human
lymphoblastoid cell line (TK6)]. These two major cell lines
measure forward mutations in the endogenous thymidine
kinase gene. The endogenous thymidine kinase gene
(human TK, rodent Tk, and referred to together as TK) is
used as a reporter gene and, if deleted, will produce a cell
that does not produce the enzyme thymidine kinase.
Viable colonies deficient in thymidine kinase after

mutation from TK* to TK" are then quantified. The types
of mutations that can be detected are point mutations,
frame-shift mutations, small deletions, chromosomal large
deletions, rearrangements, and mitotic recombinations
(Loss of Heterozygosity, LOH). Loss of the entire
chromosome that might occur from spindle malformation,
impairment, or mitotic non-disjunction could also be
detected. However, these tests are unable to detect
aneugens, for which a more appropriate test would be the
MN assay [33].
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2.1.5.2. Method and Suggested Tips for Success

Treatment with a mutagenic substance produces two
mutant types: normal growing and slow growing. Slow-
growing mutants have prolonged doubling times compared
with the heterozygous parent cells. In the MLA, they are
large-colony and small-colony mutants, while in the TK6
assay, they are early appearing and late appearing
colonies. Either way, the slow-growing mutants have
genetic damage to growth-regulatory genes near the TK
locus, causing increased doubling times and late
appearing/small colonies [89], and entailing major
structural changes to chromosomes (i.e., clastogenic
changes). The normal growing mutants do not have these
growth-regulatory changes and are typically point
mutations (i.e., mutagenic changes) [90-92]. Treatment
with cytostatic trifluorothymidine (TFT) will cause cells to
arrest if they are TK proficient (unmutated), and thus
mutant cells having this selection advantage will
proliferate and form visible colonies. In this test, as in all
others described here, metabolic activation with S9 or
knowledge of metabolic competency is required. An
important consideration is that if the test substance bears
resemblance to thymidine by structure or behavior, it may
increase spontaneous background mutant frequency,
requiring a correction. Nanomaterials are not covered by
TG 490 [88].

The assay is carried out by first treating cells in
suspension (£S9) with the test substance for 3-4 hr, or up
to 24 hr without S9 as necessary, followed by sub-culture
to carry out cytotoxicity testing (relative total growth
[RTG] for MLA; relative survival [RS] for TK6) and allow
for the expression of the mutant phenotype (MLA, 2 days;
TK6, 3-4 days).

Once the expression is complete, cells are seeded in
TFT-containing medium in soft agar or liquid medium to
determine positivity (or without TFT for viability, aka cloning
efficiency), grown for a period, and large and small colonies
counted (MLA; 10-12 days incubation, and TK6; 10-14 days
[early appearing] and after re-feeding and re-treating with
TFT an additional 7 days [late appearing] incubation) long-
term treatment is recommended [93]. Mutant Frequency
(MF) is calculated as the number of colonies corrected by
the cloning efficiency. Therefore, careful recordkeeping is
important, and daily counts are made at each step [88].

The MLA assay is carried out using the TK+/- 3.7.2C
subline of L5178Y cells, and the TK6 assay is carried out
using the WI-L2 human lymphoblastoid cell line; both cell
lines have a well-described karyotype and can be obtained
from a qualified repository [94]. At the time of beginning
cell culture, cultures should be checked to be free of
mycoplasma, karyotyped, and their population doubling
confirmed, then stored at < -150 °C, then cleansed of pre-
existing mutant cells. The method stipulates that there
should be between 10 and 100 spontaneous mutants
present throughout the experiment for both MLA and TKS6,
which necessitates treating at least 6 x 10~6 (MLA) and
20 x 1076 (TK6) cells. The concentration of the test agent
should produce cytotoxicity in the range between 20 and
10% RTG (MLA) and between 20 and 10% RS (TK6). The
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calculations for the RTG, RS, and MF are contained in the
method [88]. For MLA, colony characterization is carried
out by size or growth for the highest acceptable positive
concentration and on the positive and negative controls
for positive substances, and on the controls for negative
substances, according to the method used (agar or
microwell). For TK6, both early and late appearing
mutants are scored for all cultures, including positive and
negative control cultures. If the positive and negative
controls do not give the expected result, then the test
substance cannot be characterized [88].

The criteria for an acceptable MLA result are found in
previous studies [95-102] but are not available for TKG.
For MLA, the Global Evaluation Factor (GEF), which is an
induced mutant frequency based on historical negative
control data from participating laboratories, is used as a
comparator. If using the agar version of the test, the GEF
is 90 x 10 and if using the microwell version, the GEF is
126 x 10°. The GEF defines the level of response
considered biologically relevant and replaces the use of
statistical measures for interpreting MLA assay
positivity/negativity. For a result to be considered positive,
the increase in MF must exceed the GEF and be
concentration-related, as determined by a trend test in any
experimental condition. For a result to be considered
negative, the increase in MF must not exceed GEF, and no
trend should be found in all experimental conditions.
Whereas, in the TK6 assay, a result is positive if at least
one test concentration shows a statistically significant
increase compared with the negative control, which is
concentration-related, and if any of the results are out of
the bounds of historical negative control data in any
experimental condition. Conversely, for TK6, the result is
considered negative if none of the test conditions shows a
statistically significant increase compared with the
control. Additionally, there is no concentration-related
increase based on a trend test, and all results are within
the bounds of historical negative control data as assessed
using the Poisson 95% control limit. On rare occasions,
results for a test substance can be equivocal [88].

2.1.5.3. Advantages and Disadvantages

Harmonization and standardization are a distinct
advantage, with the procedures clearly defined and
potential pitfalls and nuances of the tests spelled out in
detail in OECD 490 [88], particularly for MLA. These
assays are best applied as part of a battery of several
tests, ideally as a follow-on test to a positive Ames Assay
result. They cover a broad spectrum of genotoxic effects,
as the heterozygosity of the TK6 gene makes it possible to
detect point mutations, large deletions, and recom-
binations. The results are consistent and comprehensive
when used in concert with other assays; for instance, it is
possible to detect mutagens that otherwise test negative
in the Ames Assay. However, its sensitivity is low for some
applications, i.e., the detection of direct-acting substances,
and for MLA, specificity is low. The time needed to
perform the assay is relatively short at 72 hours.

2.1.6. ROSGlo Assay (OECD 442E, OECD 425, OECD
442D)

2.1.6.1. Assay Principle and Applicability

The ROSGlo assay is not strictly a genotoxicity test;
rather, it provides indirect evidence of cellular damage
through oxidative stress caused by Reactive Oxygen
Species (ROS). Oxidative stress is a mechanism that may,
in some circumstances, lead to cancer. ROS such as H,0,
are important mediators of oxidative stress, which are
implicated in  cancer and  neurodegenerative
diseases/aging [103]. ROS cause oxidation of proteins,
lipids, RNA, and DNA. When the balance of
reductive/oxidative mediators within the cell leads to the
over-production of ROS, it may disrupt cellular
homeostasis and potentially result in DNA damage.
Importantly, cancer cells elevate ROS production via
oncogenic mutation, reduction in tumor suppressor
activation or transcription, increased metabolism, and
adaptive changes that allow the tumor to proliferate and
grow in a hypoxic environment [104]. In this assay,
bioluminescence is produced via activation of the luciferin
precursor, which is directly proportional to the presence
of hydrogen peroxide (H,0,) in cells or enzymatic

reactions [105].

2.1.6.2. Advantages and Disadvantages

Disadvantages are, again, that it is a short-term assay
for what may best be described as a chronic process and is
only an indirect or inferred measurement of effect
(oxidative stress, which may or may not result in
mutational events, which may or may not cause cancer).
Advantages are that it does not use horseradish
peroxidase (HRP), known to produce a high rate of false
positive results; it is amenable to high-throughput
screening (for instance, via liquid handling), and little
sample preparation is required [106]. Multiplexing with
other fluorescence-based measures of cell health is
possible and should be considered. Mammalian 2.1.7
HPRT and xprt Assay (OECD 476)

2.1.7.1. Assay Principle and Applicability

First adopted in 1984, the Hypoxanthine-guanine
Phosphoribosyltransferase (HPRT) in vitro mammalian cell
gene mutation test is used to detect forward mutations of
the hypoxanthine-guanine phosphoribosyl transferase
gene (HPRT in human cells, Hprt in rodent cells) and the
xanthine-guanine phosphoribosyl transferase transgene
(gpt) (called the XPRT test) in Chinese Hamster Ovary
(CHO) or lung (V79) fibroblasts [107, 108]. The types of
mutations that can be detected are base pair substitutions,
frameshifts, small deletions, and insertions (HPRT), or all
the foregoing plus large deletions and possibly mitotic
recombination for XPRT, because HPRT is located on the X
chromosome [95, 96, 109-112].

2.1.7.2. Method and Suggested Tips for Success

Cells in suspension are incubated with several test
concentrations and controls for 3-4 hours £S9 metabolic
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activation, subcultured for 7-9 days, and then seeded in +
6-thioguanine (TG) containing medium. TG is cytostatic;
thus, positive mutations will escape and continue to grow
while unmutated cells will not. Cytotoxicity is assessed by
relative survival (RS, ‘cloning efficiency’) measured just
after treatment, compared to survival at the end of
treatment and the control. Positive results are determined
as statistically significant, dose-dependent increases in
mutant frequency above historical negative controls as
determined by colony counts.

Cell types used are sensitive, stable, have high cloning
efficiency, and a stable spontaneous rate of mutation, and
include CHO, CHL, V79, L5178Y, and TK6 [112, 113] for
HPRT, as well as AS52 cells (which do not contain hprt, for
XPRT). After checking for the presence of contaminating
mycoplasma and confirming the correct modal
chromosome number, cell cycle time, and spontaneous
mutant frequency should also be verified. Pre-existing
mutant cells may need to be removed from working stocks
with the use of specific media (i.e., HAT media for HPRT,
MPA media for XPRT). Specific cell lines require careful
adherence to individual requirements and should be used
when growing in the log phase, ensuring optimal cloning
efficiency, with at least four test concentrations and
controls. Guidelines specify that the spontaneous mutant
frequency generally ranges between 5 and 20 x 10°, and
that the number of sufficient spontaneous mutants is = 10;
therefore, at least 20 x 10° cells should be treated, and at
least 2 x 10° are to be seeded for mutant selection [114].
During phenotypic expression, cell subculturing is
continued to maintain log phase growth, followed by re-
plating in TG-selective medium. For those samples
meeting the laboratory historical control limits of positive
and negative controls, tested =S9, at appropriate cell
densities and at concentrations that do not exceed the
recommended cytotoxicity or the TG recommendations for
maximum testing concentration, positivity is established if
the following criteria are met: 1) at least one tested
concentration differs significantly from the negative
control, including being outside of historical control limits;
and 2) there is a dose response as evaluated by a trend
test. A true negative result is established when: 1) none of
the test concentrations are outside of the current negative
control historical limits (differ significantly from negative
controls using the Poisson-based 95% control limit); and 2)
no dose response exists [108]. Rarely, equivocal results
are obtained.

2.1.7.3. Advantages and Disadvantages

Mutation frequency increases in cells that have
escaped the requirement for 6-thioguanine in media
treated with substances that cause limited or small
genetic damage, which may be detected using Ames or
large colony MLA tests. Therefore, it is a good
confirmatory assay for these types of changes, and its
processing efficiency makes it a good screening method.
This test can catch a relatively small proportion of
mutation-causing agents not captured by bacterial reverse
mutation or chromosomal aberration testing strategies, as
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it detects any mutations, not just specific ones. It can
detect a wide range of substances capable of causing
small mutational changes, using human cells or knock-out
cell lines [8, 107].

2.1.8. yH2AX Assay (EURL-ECVAM)

2.1.8.1. Assay Principle and Applicability

YH2AX is a phosphorylated (Ser-139) version of the
histone variant H2AZ. Formation of yH2AX is an early
cellular response to DNA double-strand break formation
and is considered an essential part of the DNA Damage
Response (DDR) [115]. It is widely recognized as a specific
and sensitive marker of DNA damage from ionizing
radiation, ultraviolet rays, oxidative stress, chemical
agents, and certain drugs [116]. The development of
antibodies specific for the detection of yH2AX has
produced an assay with high specificity.

2.1.8.2. Method and Suggested Tips for Success

Commonly, the assay results are measured by
microscopic quantitation of yH2AX-positive foci or single
cells. Other methods that are less specific include flow
cytometry, which has the disadvantage of measuring only
relative fluorescence intensity, without regard to specific
location or origin. Immunoblotting or ELISA, on the other
hand, only determines the sample’s total YH2AX protein
level, which can also include YH2AX-positive apoptotic cells.
Since these cells are non-viable, they should not be lumped
with damaged, but viable yH2AX-positive cells in the
quantitation. Reddig et al. [117], compares the
advantages/disadvantages of microscopic yYH2AX foci
quantitation, automated fluorescent microscopy, flow
cytometry, and immunoblotting in PBMCs treated with
etoposide for one hour. Their analysis revealed that
automated microscopic YH2AX foci quantitation was the most
sensitive and specific, compared to the Limit of Detection
(LoD), with immunoblotting showing the highest LoD. The
authors concluded that clinical utility could be achieved by
using automated microscopic yH2AX foci quantitation, which
is based on clinical plasma etoposide levels associated with
hematological toxicity and antitumor activity. An important
limitation of the assay is that when signal saturation is
reached, individual foci are no longer distinguishable and,
therefore, no longer quantifiable. Detection cannot always be
increased through the use of shorter exposure times.
Recently, an inter-comparison exercise was undertaken by
the European biodosimetry network (RENEB) [118], which
should help to increase the clinical utility of the assay.

2.1.8.3. Advantages and Disadvantages

Prediscreen, PrediProtect, and PrediRepair are branded
versions of the yH2AX test [119-121], which is recommended
by the European Union Reference Laboratory for alternatives
to animal testing [122]. Claimed results are the true
detection of 95% of carcinogenic compounds tested, no false
positive compound detection (sensitivity 98%), and a
specificity of 91%. Kopp et al. [120], reviewed 27
publications examining 329 chemicals tested using the Ames,
MN, HPRT, and Comet assays and compared those results to
the ones obtained with their yYH2AX (Prediscreen) assay
(referred to as an ‘in cell western assay’) and found an
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overall sensitivity of 60-75%, specificity of 87-100%, and
predictivity of 79-90%.

2.1.9. Other Assays

Other currently used genetox assays include the 3D
Skin Model (EpiDerm®), Embryonic Stem Cell Test, drug
uptake in vitro, hepatocyte proliferation assay in vitro
(mouse, rat, dog, human), Pig-a Assay, and non-disjunction
test using FISH or antikinetochore. Co-culture or 3D
models have an improved ability to detect secondarily
caused genotoxicity, such as by the inclusion of immune
cell components. They are excellent for exploring
mechanisms of toxicity, such as wusing specifically
engineered or treated cells or those of specific population
backgrounds.

2.1.10. In vivo Pig-a Gene Mutation Assay (OECD
470)

2.1.10.1. Assay Principle and Applicability

This assay assesses the prevalence of blood cells with
mutant phenotypes through the detection of mutations in
Pig-a (encodes a catalytic subunit of the N-
acetylglucosamine transferase complex, which synthesizes
Glycosylphosphatidylinositol (GPI) cell surface anchor
proteins, [123]), and is found only on the X chromosome.
Functionally, these mutations are an indicator of
Paroxysmal Nocturnal Hemoglobinuria (PNH) affecting
erythrocytes (CD59), granulocytes (CD55), and monocytes
(CD24 [123],). The mutation of one locus on the X
chromosome will produce the functional deficit. However,
other autosomal gene products are part of the complex;
their mutation does not produce the deficit. Thus, while
initially a test specifically for paroxysmal nocturnal
hemoglobinuria, the Pig-a assay was suggested as a
generalized test for gene mutational capacity [124, 125]
and later developed by many others. Prototypical mutants
such as N-ethyl-N-nitrosourea (ENU) and
Dimethylbenzanthracene (DMBA) were investigated using
the Pig-a assay in both rats and mice and found to be
positive for both reticulocyte and red blood cell mutations,
and subsequent work clarified that such changes could be
persistent, develop in a sequence over time reaching a
maximum and subsequently declining, and be dependent
on the dosing regimen (frequency and timing). More
information regarding dose additivity effects in specific
agents and in several species was later discovered. Human
cells from patients with Fanconi anemia and ataxia
telangiectasia were tested and shown to be susceptible to
mutation of Pig-a. Other cells, from individuals with known
DNA mutations or manipulated in vitro to produce specific
mutations, were also susceptible. Olsen et al. [123]
identified 21 studies using mice and various intentional or
accidental exposures of humans that have been studied for
Pig-a. TK6 cells were found to harbor few PIG-A, but many
PIG-L mutations. The examination of the various
chemicals, environmental exposures, and hereditary
conditions and their outcomes using Pig-a makes
interesting reading.

2.1.10.2. Method and Suggested Tips for Success

As with the Ames assay, a chemical treatment may
require metabolic activation to exert its mutagenic effects.
Mutations may accumulate over time depending on their
fixation, but may also be repaired over time. Therefore,
the timing of measurements is key, as the maximum
mutational frequency may occur weeks or longer after the
last exposure. Inter- and intra-individual variation must be
accounted for in the experimental design. Other factors,
such as dietary deficiency, can and have been shown to
play a role in toxicity [126]. An important consideration is
that enrichment by magnetic separation techniques
strongly affects detection capacity, so care should be
taken not to interpret a negative result as evidence of no
in vivo genotoxicity. In several cases (see Olsen et al.
[123]), no positive Pig-a results were observed, indicating
no effects in the bone marrow; however, positive results
were obtained in the Comet assay for cells from different
organs, highlighting differential organ sensitivity. A
similar outcome was seen after testing the chemicals
dichloropropane (DCP) and dichloromethane (DCM),
which target the liver, in mice. Neither assay was
“wrong,” but together they provided more comprehensive
information. In other cases, reticulocytes tested positive
while red blood cells (RBCs) did not, interpreted as a
protective effect in the non-treated (dietary sufficiency)
group. A battery of genetox assays used in concert is
superior to any single assay alone, and equivocal results
should be resolved through repeat testing, as
demonstrated in nanoparticle testing in mice [127-129]. A
significant advancement came from measuring the
mutation rate per cell division, rather than just mutation
frequency, in cells from Fanconi anemia and ataxia
telangiectasia patients, lymphoma cancer patients,
transformed myeloid cells, and normal donors [129-132],
revealing notable differences among these groups.
Recently, Dertinger et al. [133] adapted the PIG-A assay
for use with human blood cells, transitioning it from its
original rodent application. Additionally, the assay was
applied to B-lymphoblastoid TK6 cells by several studies
[134-136]. Interestingly, TK6 cells harbor a heterozygous
autosomal deletion of the PIG-L gene on chromosome 17,
alongside the X-linked PIG-A gene. This results in a high
spontaneous mutation rate, necessitating depletion of pre-
existing mutant cells before assay use. It is hypothesized
that mutations in PIG-L may detect clastogenic events,
while PIG-A mutations primarily identify point mutations.
To date, studies have shown positive results for
prototypical mutagens and negative results for non-
mutagens, with increased sensitivity compared to the p53-
deficient WI-L2-NS cell line when exposed to
Ethylmethanesulfonate (EMS) and Ultraviolet C light
(UVC). Future research will need to determine whether
other cell types could also serve as effective substrates for
the combined PIG-L/PIG-A assay.

2.1.10.3. Advantages and Disadvantages

The Pig-a assay, which may be performed either as an
in vitro or an in vivo assay, offers advantages over other
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assay types. Very low volumes of peripheral blood samples
are required, allowing animals to be repeatedly sampled
without euthanizing, and flow cytometry detection enables
rapid quantification. Human, rat, or mouse cells may be
used, in cells in culture or from the blood cells of treated
animals. Immunomagnetic separation or fluorescent-
labelled aerolysin reagent (FLAER) is a variation on the
preparation method that depletes wild-type cells and
enriches the pool of either the FLAER-labeled GPI anchors
or the lack of immunostaining of GPI anchor proteins (e.g.,
CD55, CD59), increasing the assay sensitivity by orders of
magnitude. Verification of mutants by DNA sequencing is
required to confirm their identity and quantify mutant
frequency. New modifications in sequencing have speeded
this process as well.

A strength of the Pig-a assay is the ability to
investigate other basic cell functions, such as the roles of
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A caution is that the kinetics of accumulation and
repair appear to differ between rats, mice, or humans, but
specificity is excellent in all three.A disadvantage of the
Pig-a assay is the assumption that the compound or its
metabolite reaches the bone marrow tissue at levels
comparable to those in the target organs. However,
previous observations have shown that different tissues
can exhibit varying responses. This limitation does not
exist in the comet or the transgenic mouse assay. As
previously stated, a negative Pig-a result does not affirm
the absence of genotoxicity. Timing, accumulation, and
repair of mutations may be crucial. The variations within
and between individuals are important study parameters
that should be considered when planning or interpreting
an experiment.

Tables 1 compares the advantages and disadvantages
of conventional and NAMs for short-term genotoxicity

DNA repair enzymes in base excision repair.

testing.

Table 1. Comparison of advantages and disadvantages of short-term conventional genetic toxicology assays.
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Test name Applicability Endpoint Assay Length Advantages Disadvantages regulatory Reference
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enzymes in BER and |Negative results should Kruger et al
other cell functions |not be interpreted as 2 Olg 2016 .
can be investigated |negative results 1135 ’13 6]
HTS method Does the compound !
reach bone marrow?
3. DISCUSSION that have developed genomic instability or altered

The current deficiencies that exist in standard testing
approaches include insufficient physicochemical
characterization of some substances, a lack of
demonstration of cell or tissue uptake and internalization,
and limitations in the coverage of genotoxic modes of
action [137]. As pointed out therein, current in vitro
genotoxicity test methods do not evaluate potential
carcinogenicity caused secondarily through inflammation
(e.g., fibrosis, nanomaterial toxicity). Acute in vitro tests
do not have the ability to correctly identify carcinogens
that act only chronically. Other studies [138, 139], have
pointed out that very little information about the genotoxic
Mechanism of Action (MOA) is found through the assays
individually, and they are resource-intensive and may not
be high-throughput capable. Often, the traditional in vitro
assays are only poorly predictive of human mutagenicity
[138]. The use of numerous assays in an in vitro test
battery may require large amounts of test chemical.
Although individual traditional assays are capable of a
high degree of specificity, the overall specificity of the test
battery may be lower. Recent efforts to address these
shortcomings are discussed in previous studies [138,
139].The main criticism of conventional in vitro
genotoxicity assays is their tendency to produce excessive
false positive results [140]. Chromosomal damage assays,
in particular, are well known for yielding false positives.
Although test systems have been developed to enhance the
sensitivity of in vitro assays, over-prediction remains a
concern. For example, a compound may contain amino
acids that promote the growth of non-mutant colonies
[141], flavonoids known to be mutagenic in the Ames
assay [142], or bacterial nitroreductases may reduce some
nitro compounds—an activity not present in mammalian
cells [29]. False positives can also arise when repair-
deficient rodent cells are used [122, 143, 144], or due to
differences between human and non-human cells [61],
highlighting species-specific variations in cellular
responses. Several studies [61, 77] have shown that the
p53 status of cells is an important factor that varies by
species. Additionally, some cell lines may be subclones

metabolism and detoxification pathways [145]. Other false
positive “red herrings” have been linked to cell culture
conditions and propagation practices, such as pH,
osmolality, excessive toxicity, apoptosis, or chelation
effects [146, 147]. For drug or agrichemical developers,
these false positives can lead to wasted time, effort, and
resources following up on substances that are ultimately
not mutagenic to humans [29, 122, 148, 149]. However, in
the EU, regulations prohibit in vivo re-testing of cosmetic
substances that test positive in vitro. In all in vitro
methods, quality control is key to obtaining useful and
meaningful experimental results [150]. The researcher
should understand the limitations of the method(s) used
and, first and foremost, have a good grounding in the state
of the art regarding cell culture, which has evolved. They
should understand that replicating a cell over multiple
passages degrades cellular material and introduces
myriad changes that are not usually monitored. Similarly,
working with multiple cell lineages in the same laboratory
carries risks of cross-contamination, and each different
cell lineage requires its own growth conditions and
specific monitoring. The genetic identity of a cell line
should always be ascertained before first use and at
intervals thereafter to prevent uninterpretable and
meaningless results.

An important consideration for the Ames Assay and all
other in vitro short-term tests is cytotoxicity. The principle
of the test method requires that the amount of the
substance producing mutations must not fall within the
range of cytotoxicity. Therefore, a titration for cytotoxicity
of the test substance to the five bacterial strains must be
performed prior to testing, using at least five doses
separated by at least %2 log. To avoid excessive toxicity, it
has been recommended to reduce the top exposure
concentration from 5000 pg/mL to 10 mM or 2000 pg/mL
[81, 108, 151].

For the Ames Assay, it seems obvious, but it is
important that agar not be overlaid while too hot, as it will
kill microorganisms. Other specific procedural issues
related to the type or class of compound being tested and
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the bacterial strains being used (including how many and
which ones to use for classes of compounds) are described
in detail in the OECD TG.

Another important consideration is the test result
interpretation [152]. The result of the assay is always
compared to the control (reference), but the difference
(increase in mutation frequency) may be slight.

Treatment with increasing exposure concentrations is
informative, and a trend test is typically performed. In
some cases, the highest tested concentration may not
produce a statistically significant increase in mutation
frequency, but the trend test may suggest that a higher
concentration, if tested, would likely yield a significant
result. Since the upper concentration is limited by
cytotoxicity, it can be challenging to definitively classify a
result as positive based on established criteria. Therefore,
biological relevance should always be considered
alongside statistical thresholds such as p < 0.05 or a =2-
fold increase.

The International Workshop on Genotoxicity Testing
(IWGT) recommends evaluating results using a
combination of three criteria: (1) a dose-related increase
in revertants, (2) a clear increase in revertants at one or
more doses compared to the concurrent negative control,
and (3) at least one dose producing revertants above
laboratory-established historical control limits [152].
These criteria can be adapted for other conventional
assays as well. Schoeny et al. further discuss how to
establish a clear response [152].

Good laboratory practice, standardization, and strict
adherence to Test Guideline (TG) methods are essential.
The TG methods provide detailed instructions, including
the use of positive and negative controls, vehicle controls,
appropriate concentration ranges, multiple exposure
levels, and specific bacterial strains. Dertinger et al. [102],
in a recent IWGT report, emphasized the importance of
using historical control data and proper methods for its
interpretation.

Although these requirements may complicate the
execution of the Ames and other conventional assays, over
10,000 substances have already been tested using the
Ames assay. This extensive database is available for use by
others, helping to reduce redundant testing efforts [153].

CONCLUSION

Conventional short-term genetic toxicity tests were
described in detail, along with a discussion on how these
tests can be misleading if not carefully performed and
interpreted. It must be stressed that one should know the
value of the test being performed and its limits, plus the
mechanism(s) of action of the compound under study, its
physicochemical properties, and the potential confounding
issues before undertaking the assay(s). Finally, it is key to
identifying a genotoxic substance (and potentially a
carcinogen) to perform multiple assays to confirm its
genotoxicity and identify or confirm its mechanism of
action. Some assays are far superior for investigating the
mechanism or even the molecular initiating event of a
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substance, and knowing which one to choose can avoid
many problems.

FUTURE DIRECTIONS

Part II of this manuscript will describe and discuss the
following alternative testing approaches (new approach
methodologies): the in vitro yeast DEL recombination
assay, 3D cell cultures and the 3D RS Comet assay, the RS
Skin MN, Bhas 42 CTA, ToxTracker™, TGX-DDI
transcriptomic biomarker, Multiflow DNA Damage, and
MutaMouse FE1 and PH assays for genetic toxicity
testing. Part I provides an update on the regulatory status
and progress of alternatives to conventional in vitro
genetic toxicity methods. A further discussion is included
on the quantitative In Vitro - In Vivo (qIVIVE) approach to
extrapolating non-whole organism results to human risk
assessment, as well as the Weight of Evidence (WoE)
approach applicable towards the elimination of the cancer
bioassay requirement for new chemical registration.
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