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Abstract:
The field of toxicology is moving forward rapidly, and the trend is toward non-animal testing. In terms of genetic
toxicity testing, there are many accepted OECD test guidelines reliant on in vivo animal models. In the interest of
providing a complete picture of the methods available for both animal-derived and non-animal genetic toxicity testing,
Part I in the series discusses the existing short-term accepted test methodologies, while Part II examines available
New  Approach  Methodologies  (NAMs).  The  advantages  and  disadvantages  of  the  current  methodologies  are
discussed here, while those of new methodologies and the current regulatory landscape relative to them are reserved
for discussion in Part II.
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1. INTRODUCTION
Genotoxicity  refers  to  the  ability  of  a  substance  to

damage genetic material, while mutagenicity refers to the
permanent and transmissible variations in the amount or
structure  of  genetic  material,  leading  to  increased
mutational  frequency  [1].  Carcinogens  may  operate  by
genetic (heritable via the damage of genetic material) or
epigenetic  (somatically  heritable,  such  as  histone
modification)  mechanisms.  Central  to  the  theory  of
carcinogenesis  is  that  mutations,  under  the  right
circumstances,  cause  cancer.  It  has  been  theorized  that
even  one  single  mutation  (“one  hit”)  may  cause  cancer,
and hence ultimately be fatal.

The origins of the “one hit” model can be traced to the
‘linearity at  low-dose’  concept (LNT),  also referred to as
linear low-dose extrapolation, in ionizing radiation-induced
mutation. This concept alleges that there is no lowest safe
dose  for  carcinogens  (no  ‘threshold’  of  carcinogenicity)
because  any  random  mutational  event  could  result  in

cancer.  As  detailed  by  Calabrese  et  al.  [2-7],  from  the
1920s  onward,  physicists  and  radiation  geneticists
developed and integrated the LNT theory, and it became
accepted  science.  Originally,  this  theory  asserted  that
mutational  events  were  proportional  to  the  amount  of
energy  absorbed,  driving  the  evolution  of  biological
organisms.  Developed  further  through  work  with
Drosophila,  this  concept  replaced  the  previous  ‘gold
standard’ threshold dose-response theory long accepted in
medicine  and  physiology.  By  1958,  the  LNT  theory  was
generalized to somatic cells and cancer risk assessment by
the U.S. National Committee (the National Committee on
Radiation  Protection  [NCRPM]  [8])  and  quickly  adopted
nationally and internationally by various committees [4],
eventually resulting in adoption by the U.S. Safe Drinking
Water  Committee  (1977)  of  the  National  Academy  of
Science,  who extended the BEAR/BEIR committee linear
dose-response  risk  assessment  model  to  chemical
carcinogens. It was subsequently adopted by the US EPA
and  the  US  FDA  in  1977  for  animal  carcinogen  drug
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residues (U.S. CFR 21). Thus, the search was launched for
genotoxic  compounds,  and several  different  assays  were
introduced to test for the genotoxicity of various chemical
and biological agents. The Ames Test [9], is considered the
bedrock  of  testing.  This  test  for  mutational  histidine
revertants  is  carried  out  in  four  or  more  Salmonella
bacterial  strains  engineered  to  be  more  susceptible  to
specific types of mutants, enhancing the sensitivity of the
test. An E. coli strain was also developed. The Ames Assay,
Micronucleus Test, Chromosomal Aberration Assay, Comet
Assay,  Thymidine  Kinase  Assay,  and  the  more  recent,
indirect ROSGlo Assay are now familiar to every genetic
toxicologist.  Advantages  include  in  vitro  accessibility,
relatively  low  cost,  and  speed.  The  advent  of  in  vitro/ex
vivo  genetox  testing  accelerated  the  acquisition  of
knowledge  about  the  genotoxic  potential  of  hundreds  to
thousands of substances, both natural and anthropogenic.
In  some  instances,  this  caused  controversy  because  the
substances were not anticipated to be hazardous (such as
char-cooked meats or tires [10]). In other cases, the tests
provided proof of the mutagenic character of substances
that had long eluded cancer biologists, such as cigarette
smoke  condensate,  for  which  animal  models  had  proved
problematic  [11].  The  strengths  and  weaknesses  of  the
standard short-term genetic toxicity tests currently in use
are discussed in Part I of this review.

2. METHODS
The  literature  was  searched  using  the  following

strings:
“Short-term” AND genetox* AND testing AND method*
Genotox* AND testing AND conventional AND method*
Genotox*  AND  testing  AND  conventional  AND

limitation*,
The following phrases:
“Conventional  short-term  genotoxicity  testing

methods”
“Limitations  of  conventional  short-term  genotoxicity

testing”,
Using Google, Google Scholar, PubMed, ResearchGate,

ScienceDirect.com,  Wiley  Online  Library,  ACS
Publications,  and  U.S.  Food  and  Drug  Administration.

Then the snowball technique was used to build on the
results obtained. ‘Conventional Short-Term Assays’  were
defined  as  those  non-chronic  or  non-sub-chronic  assays
that  have  been  in  use  for  at  least  20  years  and  are
accepted  by  OECD  or  EURL/ECVAM  and  have  been
subjected  to  validation  through  multi-laboratory  and
various  other  testing  strategies.

The  results  were  sorted  according  to  date  of
publication  and  relevancy,  and  any  duplicates  were
discarded. The methods were defined as either OECD TGs,
EURL/ECVAM,  or  non-OECD/EURL/ECVAM  TGs.
Publications  about  other  tests  were  not  included.

Results  were  then  categorized  into  major
methodologies. Methods that were not described as (gold)
standard/standardized,  frequently  employed,  or  having

been  accepted,  validated,  and  improved  through
longstanding  usage,  were  not  included.

The  remaining  references  were  analyzed  for  their
content and included for discussion if they described the
advantages or disadvantages of the test method. Finally,
they  were  compared  with  the  specified  TG  to  verify
accuracy  at  specific  points.

2.1. Conventional Short-Term Assays: Shortcomings
and Strengths

The following conventional short-term genetic toxicity
assays are briefly compared and contrasted in Table 1 .

2.1.1. Ames Test (OECD 471)

2.1.1.1. Assay Principle & Applicability
The Ames Assay was the first genetic toxicity test to be

developed, and it is the ‘gold standard’ test for classifying
a  chemical  substance  as  genotoxic.  Since  the  test  uses
prokaryotic  (bacterial)  cells,  direct  concordance  with
human  carcinogenesis,  or  even  mutagenesis,  is  not
possible. It is assumed that if a substance is mutagenic in
bacteria, it is likely to be mutagenic in mammals as well.
However, as pointed out in the test guideline (TG) OECD
471  [12],  bacterial  cells  have  different  uptake,  meta-
bolism, chromosomal structure, and DNA repair processes
than  mammalian  cells.  Each  test  substance  should  be
evaluated  in  terms  of  known  Toxicokinetics  (TK)  and
metabolism,  where  possible.

2.1.1.1.2. Method and Suggested Tips for Success
Due to the inherent differences between bacterial and

mammalian  cellular  systems,  some  compounds  are  not
suitable for testing in the Ames Assay. These include some
antibiotics  (because  they  interfere  with  bacterial  cell
systems)  and  some  topoisomerase  inhibitors/nucleoside
analogues  (because  they  interfere  with  mammalian  cell
systems). Indeed, there are mechanisms of carcinogenicity
that are considered non-genotoxic, such as oxidative stress
or epigenetic (i.e., histone modification) processes. Many
of these cannot be tested for in the Ames Assay (except for
several oxidative mutagens such as hydrogen peroxide and
other  peroxides,  X  rays,  bleomycin,  neocarzinostatin,
streptonigrin,  and  other  quinones  and  phenylhydrazine,
using the TA102 strain) [13]. To reduce the possibility of
false  negative  test  results,  the  preincubation  method  is
considered  appropriate  for  derivatives  of  aliphatic  N-
nitroso compounds or alkaloids [14-16], or for azo dyes the
Prival method [17], and discussed in Gatehouse et al. [18].
Importantly,  some  chemicals  have  specific  properties
rendering  them unsuitable  for  testing  with  Ames  Assays
(benzene, urethane, procarbazine, salicylazosulfapyridine),
and there may be others [19, 20]. For nanomaterials, the
inability to permeate the bacterial cell wall is expected to
interfere with obtaining test results.

An exogenous source of metabolic activation (typically
rat S9 liver extract) is required, and it is usual to include
+ and – S9 conditions to confirm whether the substance
requires  metabolic  activation  to  be  mutagenic.  Since
Guengerich et al. [21], different substances were known to



Conventional Short-Term Genetic Toxicity Assays 3

suppress or induce CYP450s, and there have been studies
examining the effects of induction with Aroclor 1254 and
of  differences  between rat  and human liver  induction or
other  organs,  showing that  induction is  not  uniform and
varies  by  orders  of  magnitude.  Some  CYP450s  are
expressed  less  or  not  at  all,  depending  on  species,  age,
and  sex  [22-27].  Human  liver  S9  is  generally  not
recommended  for  use  due  to  its  reduced  sensitivity  and
lack of concordance of enzymatic activity with the level of
mutational effect [28]. However, it could prove useful for
evaluating chemicals such as aromatic amines, which have
species-specific  metabolic  differences.  It  is  important  to
understand  the  system  limitations  (which  CYP450s  are
present and what is their usual induction in S9). Examples
exist of compounds that were negative in the Ames Assay
as  usually  performed  but  showed  strong  results  in
variations of the test, which depended on the properties of
the test substance itself (e.g., Ochratoxin A) [22, 29]. An
enhanced  Ames  Test  has  been  published  that  addresses
the  reduced  sensitivity  of  the  Ames  assay  to  N-
nitrosamines  [30],  which  include  substances  found  as
impurities in drugs containing a wide variety of functional
groups. The enhanced protocol should be used if the test
substance is an N-nitrosamine and does not initially test
positive  in  the standard Ames assay.  Thomas et  al.  [31],
discusses  the  optimal  selection  criteria  for  accurate
detection  of  N-nitrosodimethylamine  and  N-nitrosodie-
thylamine.

2.1.1.3. Advantages and Disadvantages
Advantages  of  the  test  include  relative  ease  of

performance, cost, and time. However, conflicting results
are sometimes obtained for several chemicals that may be
attributed  to  differences  in  DNA  repair  capacity  or
metabolism among cell types or species used in metabolic
activation,  bioavailability,  or  factors  specific  to  the
mechanism/endpoint  of  the  substance,  resulting  in  false
negatives or positives [28, 29]. The former would appear
to be most critical  for human health,  although the latter
may be the most resource-intensive.

The  Ames  Assay  does  not  eliminate  animal  testing
entirely because the S9 rat liver microsomal fraction and
the various cell  lines that may be employed all  originate
from vertebrate  mammalian  species.  However,  it  can  be
said to reduce the use of animals in toxicology testing by
an  extraordinary  degree,  especially  if  a  ‘negative’
compound  is  not  perceived  to  require  further  testing  in
vivo,  or if  a ‘positive’ compound is dropped from further
development due to the potential for carcinogenicity. Both
scenarios can mean substantial savings in effort, time, and
resources, as well as in animal lives.

2.1.2. Micronucleus Test (OECD 474, 475, 487)

2.1.2.1. Assay Principle & Applicability
The  Micronucleus  (MN)  test  is  used  to  evaluate

clastogenic and aneugenic damage in vivo or in vitro. MN
is a  widely  accepted and validated assay that  is  covered
under the recently updated OECD TG 487 (in vitro; MNvit)
[32,  33],  OECD  474  [34],  OECD  475  [35],  and  FDA

Redbook [36] (in vivo). Micronuclei were first identified by
Howell  and  then  Jolly  [37,  38]  and  first  used  to  identify
and  quantify  chromosomal  damage  by  Evans  et  al.  [39].
Others  [40-48],  as  described  below,  went  on  to  develop
and refine the principles and usage of the test. This assay
identifies chromosomal breakage or spindle disruption by
means  of  counting  micronucleated  cells  (cells  with  an
extra,  small  or  ‘micro-’  sized  nucleus  in  addition  to  the
original nucleus), which were early on found to result from
folic acid and vitamin B deficiency, X-ray treatment, and
exposure to other mutagens like hydrogen peroxide. Such
cells were first identified in the bone marrow of fetal mice,
but  later  it  was  determined  that  peripheral  blood
erythrocytes, and then other cell  types (both human and
rodent),  were  also  a  suitable  system  for  quantitating
micronuclei, which obviated the need to kill animals and
clearly would be an advantage in multiple dosing studies

2.1.2.2. Method and Suggested Tips for Success
The  in  vivo  MN  test  (mammalian  erythrocyte

micronucleus  assay)  detects  chromosomal  or  spindle
disruption in erythrocytes sampled from bone marrow or
peripheral blood cells, typically of rodents [35, 37]. If the
collection  of  cells  is  from  bone  marrow,  the  amount  of
information  that  can  be  collected  will  be  limited  to  the
single  collection  time  at  the  sacrifice  of  each  treatment
group.  If  blood is  used,  the regimen can be more varied
with  repeat  dosing  and  multiple  collection  times.  The
method is intensive in its use of animals (at least 5 animals
per  group,  multiple  doses,  potentially  multiple  animal
groups for different sacrifice times, concurrent TK groups,
potentially recovery groups, positive and negative control
groups,  initial  limit  testing,  and spare  animals).  Animals
may be treated once or twice within 24 hours, with blood
samples  withdrawn  36  to  72  hours  after  the  last  dose.
Alternatively, they may be treated once per day for several
days,  with  samples  collected  24  hours  after  the  last
treatment  (bone  marrow)  or  40  hours  after  the  last
treatment  (peripheral  blood).  At  least  200  erythrocytes
should  be  counted  for  bone  marrow  and  1000  for
peripheral  blood,  and  the  ratio  of  immature  to  total  red
blood cells should be determined for each animal. At least
2000  immature  erythrocytes  per  animal  are  scored  for
micronuclei,  with  the  potential  to  score  mature
erythrocytes  for  more  information  (especially  if  animals
are treated continuously for four or more weeks). Further
quality  control/assurance  measures  can  be  found  in
Howell  and  OECD  TG  475  [35,  37].

OECD  TG  487  [33],  the  MNvit  test  (micronucleus  in
vitro)  is  distinct  from the in vivo  micronucleus test  [49].
Chromosomal  damage,  resulting  from  the  formation  of
acentric  chromosomal  fragments  or  whole  chromosomes
that  fail  to  migrate  to  the  poles  during  anaphase,  is
detected  in  cells  treated  in  vitro.  Cells  must  have
undergone one cell division during or after test substance
exposure. The resulting micronuclei are easily visualized
and counted manually or by automated means (e.g., FACS
or cell sorting, image analysis, laser scanning cytometry)
of at least 2000 cells. Chromosomal aberrations scored in
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metaphase differ from MNvit scoring because the damage
may  not  transfer  to  daughter  cells,  whereas  anaphase
scored  chromosomal  damage  indicates  that  the  damage
will transfer permanently.

The addition of Cytochalasin B (CytoB) prior to mitosis
prevents  the  completion  of  cytokinesis  after  nuclear
division, resulting in binucleate cells. This characteristic is
useful  for  counting  micronuclei  in  cells  that  have
undergone  only  one  mitotic  event.  However,  the  use  of
CytoB  is  not  required  if  it  can  be  shown  that  cells  have
undergone  one  mitosis,  except  for  when  human
lymphocytes  are  used.

This  is  because  cell  cycle  times  vary  among  donors,
and not all lymphocytes respond to Phytohaemagglutinin
(PHA)  stimulation,  which  is  a  requirement  for  the
activation  of  proliferation  in  lymphocytes.  Further,  cells
are  not  typically  treated  with  CytoB if  flow cytometry  is
used for quantitation [33].

Different metrics (relative increase in cell count [RICC]
and relative population doubling [RPD] when CytoB is not
used,  cytokinesis  block  proliferation  index  [CBPI]  or
Replication  Index  [RI]  when  CytoB  is  used)  are  used  to
quantify cytotoxicity. Therefore, for cells not treated with
CytoB, RICC or RPD should be used to inform the mitotic
status.  In  either  case,  cytotoxicity  should  be  quantified
with  and  without  metabolic  activation  during  actual
testing and may be as well during the preliminary phase of
dose  selection  [33].  All  the  key  stipulations  that  are
present in the Ames assay apply to MNvit as well, such as
the inclusion of multiple exposure concentrations (at least
3) plus positive and negative controls,  limitations on the
amount  of  cytotoxicity  (the  highest  cytotoxicity  should
achieve  55  ±  5%),  and  control  of  pH,  osmolality,  and
solubility  are  among  them.  Assay  conditions  should
include 3-6 hr exposure to test chemical ±S9, removal of
test substance, followed by counting after 1.5 – 2.0 normal
cell  lengths  from  the  beginning  of  treatment.  To
thoroughly  rule  out  a  negative  result,  conditions  should
also include a continuous exposure without S9 for 1.5 – 2.0
cell  lengths.  The  conditions  can  be  carried  out
sequentially,  stopping  after  the  first  positive  result.  The
same difficulties  may arise:  capturing the optimal  active
range  of  the  suspected  genetic  toxicant,  dealing  with
insoluble substances, interacting with cell culture or other
reagents,  karyotypic  instability,  and  the  background
frequency of micronuclei are some examples. Further, the
origin of the cells, their intrinsic p53 status, and their DNA
damage  repair  capabilities  should  be  considered.  All
rigorous  cell  culture  quality  control  measures  should  be
followed, as should the recommendations for the specific
cell types that are used [33].

2.1.2.3. Advantages and Disadvantages
Quantitation  of  micronuclei  in  either  immature

nucleated  or  enucleated  mature  red  blood  cells  is
relatively simple,  as is  interpretation in most cases [32].
The in  vivo  MN assay is  superior  in that  it  encompasses
metabolism,  PK,  and  DNA-repair  processes  of  the  whole
organism during the treatment. However, the variations in

these  parameters  among  organisms,  coupled  with  the
requirement  that  the  test  substance  reach  the  bone
marrow and interact  with the blood-forming elements to
see a positive result, are limiting.

Advantages of the MNvit assay are its robustness and
validity  in  many  cell  types,  human  or  other  mammalian
peripheral blood lymphocytes [40, 44, 46, 50], CHO, V79,
CHL/IU, L5178Y, or human TK6 [29, 50-62], as endorsed
by OECD (2023), SFTG [29, 50-53], IWGT [63, 64], ECVAM
[65,  66],  and  ESAC  [67].Further,  the  method  can  be
augmented by the addition of immunochemical labeling of
kinetochores  or  the  use  of  FISH  (fluorescence  in  situ
hybridization) methods to label centromeres or telomeres
[44, 47, 64, 68-64]. These methods increase the amount of
information  gleaned  from  the  experiments,  allowing
positive  results  to  identify  the  mechanism of  damage  as
clastogenic  or  aneugenic.  The  method  allows  for  the
identification  of  aneugens  that  are  otherwise  difficult  to
study (OECD 473) but cannot differentiate substances that
induce changes in ploidy or chromosome number, without
the use of FISH [34].

In identifying positive genetic toxicants, the success of
the micronucleus test is considered comparable to that of
the  Comet  and  γH2AX  phosphorylation  assays.  It  is
specific  to  certain  types  of  cellular  damage.  However,  a
major shortcoming has been identified [77]: 30 to 40% of
compounds that are negative in both the in vivo MN assay
and the ToxTracker assay are positive in the in vitro MN
assay,  possibly  due  to  oxidative  stress  generated  by  the
compound rather than direct  DNA damage.  Additionally,
the  question  arises  whether  the  toxicant  or  its
metabolite(s) reach the target tissue in vivo, inferring false
negative results, or whether false positives have occurred,
causing systemic or generalized toxicity from excessively
high  doses.  Therefore,  caution  is  advised  in  the
interpretation  of  MN  results,  and  such  results  are  best
used as part of an in vitro and/or in vivo battery of tests.

2.1.3.  In  Vitro  Mammalian  Cell  Chromosomal
Aberration Test (OECD 473)

2.1.3.1. Assay Principle and Applicability
This  assay  was  originally  adopted  in  1983  and  has

undergone  periodic  revision  and  updates  [78].  It  is
intended  for  the  detection  of  clastogens  causing
chromosomal aberrations and does not detect aneugens.

2.1.3.2. Method & Suggested Tips for Success
Human or rodent cell lines or primary cells that have a

stable  karyotype  and  a  low  rate  of  spontaneous
chromosomal  aberration  should  be  used  with  metabolic
activation  unless  they  are  known to  be  competent.  Cells
are treated ± S9 with the test substance for 3–6 hours or
continuously exposed for 1.5 cell cycles and treated 1 to 3
hours  prior  to  harvest  with  Colcemid  to  arrest  the  cell
cycle at metaphase, treated hypotonically, fixed, stained,
and the fixed preparations microscopically scored for the
presence  of  chromatid-  and  chromosomal  aberrations,
which  are  recorded  separately.  Polyploidy  and
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endoreduplication are recorded. At least 300 metaphases
are scored to satisfy statistical requirements unless there
is  a  high  number  of  cells  with  chromosomal  aberrations
(test  substance is  clearly  positive).  The methods for  this
assay  differ  from  MNvit  only  in  that  Colcemid  is  used
instead  of  CytoB.  All  other  guidelines  and  recommen-
dations mentioned above for the MN assay also apply [78].
Advantages and Disadvantages

This assay is a staple in genetic toxicity testing and is
simple procedurally and quantitatively, but the test cannot
detect aneugens as polyploidy alone does not distinguish
aneugens  and  may  indicate  cell  cycle  perturbation  or
cytotoxicity only. Additionally, the test requires metabolic
activation and requires metaphase arrest.

2.1.4. Comet Assay (OECD 489)

2.1.4.1. Assay Principle and Applicability
Originally  developed by Cook et  al.  [79]  and later by

Ostling  [80],  the  comet  assay  (OECD  489)  [81]  is  also
known as  single-cell  gel  electrophoresis  (SCGE)  and  the
alkaline comet assay. It is used to measure the occurrence
of single-strand breaks (SB) and alkali-labile sites (ALS) in
eukaryotic  DNA  [82,  83],  which  are  pro-mutagenic.  Not
only the presence or absence of DNA damage, but the type
and  amount  of  damage  can  be  identified  and  quantified
[83]. For instance, by the introduction of bacterial lesion-
specific endonucleases, it can be determined whether UV-
induced pyrimidine  dimers,  oxidized  bases,  or  alkylation
damage has occurred [82, 84]. Specific bacterial enzymes
used  are  endonuclease  II  (oxidized  pyrimidines),
formamidopyrimidine  DNA  glycosylase  for  8-oxoguanine
and  other  purines,  T4  endonuclease  V  for  UV-induced
cyclobutene  pyrimidine  dimers,  or  Alk  A  for  3-
methyladenine  sites.  The  endonucleases  act  on  the
accessible DNA sites, thus the amount of activity over time
is a direct measure of pre-existing damage [82].

2.1.4.2. Method and Suggested Tips for Success
The  rate  of  strand  break  repair  can  be  measured  by

adding  damaged  comet  tail  material  to  cell  isolates  and
monitoring the repair over time, as a measure of the cells’
reparative  capacity.  Cells  (either  from  disaggregated
tissue,  circulating lymphocytes,  or  cells  in culture;  plant
cells  may  be  used  if  finely  minced)  are  embedded  in
agarose, placed on a plain glass slide, and immersed in a
lysis  buffer,  which  denatures  the  DNA  (i.e.,  releasing
supercoils).  Finally,  the  cells  are  subjected  to
electrophoresis,  and  the  images  are  analyzed  under
fluorescence  microscopy  [82-84].  Ethidium  Bromide  or
DAPI,  both  of  which  bind  strongly  to  double-stranded
DNA,  are  commonly  used  to  visualize  comets.  Acridine
orange  can  differentiate  single-stranded  (red)  from
double-stranded (yellow-green) DNA. The intensity of the
fluorescence  of  the  comet  DNA  in  the  ‘tail’  is  linearly
correlated with the amount  of  damaged DNA.  The assay
has been commercialized (for instance, R & D Systems).

The lysis conditions can be adjusted to scan for single-
vs.  double-strand  breaks  (neutral  conditions  for  double-
stranded breaks, alkaline for smaller amounts of damage,

including  both  single-  and  double-stranded  breaks).
Software is available to analyze the strand break results,
but  the human eye can readily  visualize and classify  the
level of severity of a strand break as accurately, if not as
efficiently, as machine-aided classification [82-84].

Some  common  misconceptions  have  evolved,  for
instance, that a high pH is needed to detect single strand
breaks. The use of alkali increases the visibility of comet
tails  and  the  types  of  damage  detected  but  not  the
sensitivity  of  the  assay.  Tail  intensity  increases
accordingly. Other variations on the comet theme include
bromodeoxyuridine (BrDU) labeling to detect DNA breaks
associated  with  replicating  DNA  in  S-phase.  The  BrDU
label  will  show  up  in  the  comet  tail,  versus  the  head,
which would instead indicate post-replicative labeled DNA.
Another  nuance  is  to  inhibit  DNA  synthesis  using,  for
instance,  hydroxyurea,  cytosine  arabinoside,  or
aphidicolin, blocking repair synthesis and resulting in the
accumulation  of  breaks  over  time.  In  peripheral
lymphocytes, which are non-dividing, breaks increase over
time without the use of inhibitors as the rate of repair is
naturally slow. FISH can be used to identify specific areas
of chromosomes, centromeres, telomeres, and single-copy
genes that are damaged or to monitor gene-specific repair
rates [82].

It  should  not  be  assumed that  the  cells  in  the  comet
tail  are  apoptotic;  damaged  DNA  can  be  repaired  while
apoptosis is irreversible. According to Collins [82], some
apurinic (AP) sites might not be fully converted to strand
breaks,  although  strong  alkali  conditions  are  likely  to
convert  more  of  them  than  weaker  conditions  might,
leading  to  the  supposition  that  weaker  conditions  limit
sensitivity. Some caution is advised in interpreting results,
as  the  intensity  of  staining  is  likely  cell  cycle  phase
dependent,  as the total fluorescence signal reflects DNA
content. Cells on a slide should be limited to about 2 x 104

to  prevent  overlapping  comets  that  are  impossible  to
count. Additionally, signal saturation may occur, leading to
an underestimation of damaged bases. This effect can be
checked for by performing a dose-response curve. There
should  be  no  deviation  from  linearity  at  the  highest
exposure concentration. Air bubbles and edges should be
avoided. About 50 comets per slide should be quantified. It
should be noted that strand breaks typically occur (in well-
studied  X-ray  experiments)  only  about  2.5  times  per  109

Dalton, that is, once every 160 µm. Consequently, it is not
possible to determine fragment length in this assay as in
conventional  DNA  electrophoresis.  DNA  in  the  tail  does
not migrate by fragment length [82-84]. Quality control in
the assay should be determined by comparing with a well-
known standard, either as supplied by the manufacturer or
through  γ-  or  x-irradiated  controls  [85].  As  in  any  well-
planned study, the number of samples needed should be
determined  a  priori  by  a  Power  Analysis.  Preliminary
studies can help determine the intra- and inter-individual
variability that needs to be overcome to separate the true
result from background noise. A good idea is to establish
and  maintain  a  pool  of  frozen  cells  with  known  damage
under  controlled  conditions,  which  can  be  used  as
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laboratory controls in any experiment. Cells can be frozen
at  -80°C  with  dimethyl  sulfoxide  (DMSO)  and  with  or
without  fetal  bovine  serum  (FBS)  [82].  Checking  the
viability of  cells  using trypan blue can be misleading, as
blue cells may yet be viable notwithstanding damaged cell
membranes. Thus, the optimal condition of a cell for use in
the comet assay is for untreated cells to show 10% or less
of DNA in the comet tail, indicating they are undamaged.
After analysis, slides can be dried and stored indefinitely
on plain glass slides [82].

2.1.4.3. Advantages and Disadvantages

2.1.4.3.1.  The  Method  Is  Simple,  Relatively  Rapid,
And Inexpensive To Perform.

Comet  assays  are  a  dependable  measure  of  DNA
damage;  however,  there  are  nuances  to  the  method and
the  results  are  sometimes  over-interpreted.  As  with  the
Ames  assay,  the  comet  assay  depends  initially  on
biological  material  that  must  be  obtained  from  living
organisms.  Perpetually  cultured  cells  can  be  used,
decreasing the use of live organisms, but they are subject
to  deterioration  and  deviations  over  time  and  must  be
stringently checked to ensure they maintain their cellular
and  genomic  identity  and  integrity.  HeLa  cells  are  a
common  source  of  cross-contamination  through
volatilization  and  have  been  found  to  contaminate  many
cell lines [86]. Some estimates have even put the number
of  misidentified or contaminated cell  lines as high as 36
percent [86, 87].

2.1.5.  Mouse  Lymphoma  (MLA)  and  Thymidine
Kinase Assay (TK6) (OECD 490)

2.1.5.1. Assay Principle and Applicability
These assays have been widely used since the 1980’s

and  are  described  under  OECD  Test  Guideline(TG)  490
[88],  (superseded  TG  476  of  1984,  1997),  which  was
written for the MLA assay but since it uses the TK locus it
covers  both  assays,  which  have  a  similar  endpoint
although  the  two  cell  lines  are  not  interchangeable
[L5178Y mouse lymphoma cell line (L5178Y), TK6 human
lymphoblastoid cell line (TK6)]. These two major cell lines
measure forward mutations in the endogenous thymidine
kinase  gene.  The  endogenous  thymidine  kinase  gene
(human TK, rodent Tk, and referred to together as TK) is
used as a reporter gene and, if deleted, will produce a cell
that  does  not  produce  the  enzyme  thymidine  kinase.
Viable  colonies  deficient  in  thymidine  kinase  after
mutation from TK+/- to TK-/- are then quantified. The types
of  mutations  that  can  be  detected  are  point  mutations,
frame-shift mutations, small deletions, chromosomal large
deletions,  rearrangements,  and  mitotic  recombinations
(Loss  of  Heterozygosity,  LOH).  Loss  of  the  entire
chromosome that might occur from spindle malformation,
impairment,  or  mitotic  non-disjunction  could  also  be
detected.  However,  these  tests  are  unable  to  detect
aneugens, for which a more appropriate test would be the
MN assay [33].

2.1.5.2. Method and Suggested Tips for Success
Treatment with a mutagenic substance produces two

mutant  types:  normal  growing  and  slow  growing.  Slow-
growing mutants have prolonged doubling times compared
with the heterozygous parent cells. In the MLA, they are
large-colony  and small-colony  mutants,  while  in  the  TK6
assay,  they  are  early  appearing  and  late  appearing
colonies.  Either  way,  the  slow-growing  mutants  have
genetic  damage to  growth-regulatory  genes  near  the  TK
locus,  causing  increased  doubling  times  and  late
appearing/small  colonies  [89],  and  entailing  major
structural  changes  to  chromosomes  (i.e.,  clastogenic
changes). The normal growing mutants do not have these
growth-regulatory  changes  and  are  typically  point
mutations  (i.e.,  mutagenic  changes)  [90-92].  Treatment
with cytostatic trifluorothymidine (TFT) will cause cells to
arrest  if  they  are  TK  proficient  (unmutated),  and  thus
mutant  cells  having  this  selection  advantage  will
proliferate and form visible colonies. In this test, as in all
others  described  here,  metabolic  activation  with  S9  or
knowledge  of  metabolic  competency  is  required.  An
important consideration is that if the test substance bears
resemblance to thymidine by structure or behavior, it may
increase  spontaneous  background  mutant  frequency,
requiring a correction. Nanomaterials are not covered by
TG 490 [88].

The  assay  is  carried  out  by  first  treating  cells  in
suspension (±S9) with the test substance for 3–4 hr, or up
to 24 hr without S9 as necessary, followed by sub-culture
to  carry  out  cytotoxicity  testing  (relative  total  growth
[RTG] for MLA; relative survival [RS] for TK6) and allow
for the expression of the mutant phenotype (MLA, 2 days;
TK6, 3–4 days).

Once  the  expression  is  complete,  cells  are  seeded  in
TFT-containing  medium  in  soft  agar  or  liquid  medium  to
determine positivity (or without TFT for viability, aka cloning
efficiency), grown for a period, and large and small colonies
counted (MLA; 10-12 days incubation, and TK6; 10-14 days
[early appearing] and after re-feeding and re-treating with
TFT an additional 7 days [late appearing] incubation) long-
term  treatment  is  recommended  [93].  Mutant  Frequency
(MF) is  calculated as  the number of  colonies  corrected by
the  cloning  efficiency.  Therefore,  careful  recordkeeping  is
important, and daily counts are made at each step [88].

The MLA assay is carried out using the TK+/- 3.7.2C
subline of L5178Y cells, and the TK6 assay is carried out
using the WI-L2 human lymphoblastoid cell line; both cell
lines have a well-described karyotype and can be obtained
from a qualified repository [94]. At the time of beginning
cell  culture,  cultures  should  be  checked  to  be  free  of
mycoplasma,  karyotyped,  and  their  population  doubling
confirmed, then stored at < -150 °C, then cleansed of pre-
existing  mutant  cells.  The  method  stipulates  that  there
should  be  between  10  and  100  spontaneous  mutants
present throughout the experiment for both MLA and TK6,
which necessitates treating at least 6 × 10^6 (MLA) and
20 × 10^6 (TK6) cells. The concentration of the test agent
should produce cytotoxicity in the range between 20 and
10% RTG (MLA) and between 20 and 10% RS (TK6). The
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calculations for the RTG, RS, and MF are contained in the
method [88]. For MLA, colony characterization is carried
out by size or growth for the highest acceptable positive
concentration  and  on  the  positive  and  negative  controls
for positive substances,  and on the controls for negative
substances,  according  to  the  method  used  (agar  or
microwell).  For  TK6,  both  early  and  late  appearing
mutants are scored for all cultures, including positive and
negative  control  cultures.  If  the  positive  and  negative
controls  do  not  give  the  expected  result,  then  the  test
substance cannot be characterized [88].

The criteria for an acceptable MLA result are found in
previous  studies  [95-102]  but  are  not  available  for  TK6.
For MLA, the Global Evaluation Factor (GEF), which is an
induced  mutant  frequency  based  on  historical  negative
control data from participating laboratories, is used as a
comparator. If using the agar version of the test, the GEF
is 90 x 10-6, and if using the microwell version, the GEF is
126  x  10-6.  The  GEF  defines  the  level  of  response
considered  biologically  relevant  and  replaces  the  use  of
statistical  measures  for  interpreting  MLA  assay
positivity/negativity. For a result to be considered positive,
the  increase  in  MF  must  exceed  the  GEF  and  be
concentration-related, as determined by a trend test in any
experimental  condition.  For  a  result  to  be  considered
negative, the increase in MF must not exceed GEF, and no
trend  should  be  found  in  all  experimental  conditions.
Whereas, in the TK6 assay, a result is positive if at least
one  test  concentration  shows  a  statistically  significant
increase  compared  with  the  negative  control,  which  is
concentration-related, and if any of the results are out of
the  bounds  of  historical  negative  control  data  in  any
experimental condition. Conversely, for TK6, the result is
considered negative if none of the test conditions shows a
statistically  significant  increase  compared  with  the
control.  Additionally,  there  is  no  concentration-related
increase based on a trend test, and all results are within
the bounds of historical negative control data as assessed
using  the  Poisson  95%  control  limit.  On  rare  occasions,
results for a test substance can be equivocal [88].

2.1.5.3. Advantages and Disadvantages
Harmonization  and  standardization  are  a  distinct

advantage,  with  the  procedures  clearly  defined  and
potential  pitfalls  and  nuances  of  the  tests  spelled  out  in
detail  in  OECD  490  [88],  particularly  for  MLA.  These
assays  are  best  applied  as  part  of  a  battery  of  several
tests, ideally as a follow-on test to a positive Ames Assay
result. They cover a broad spectrum of genotoxic effects,
as the heterozygosity of the TK6 gene makes it possible to
detect  point  mutations,  large  deletions,  and  recom-
binations.  The results  are  consistent  and comprehensive
when used in concert with other assays; for instance, it is
possible to detect mutagens that otherwise test negative
in the Ames Assay. However, its sensitivity is low for some
applications, i.e., the detection of direct-acting substances,
and  for  MLA,  specificity  is  low.  The  time  needed  to
perform  the  assay  is  relatively  short  at  72  hours.

2.1.6. ROSGlo Assay (OECD 442E, OECD 425, OECD
442D)

2.1.6.1. Assay Principle and Applicability
The  ROSGlo  assay  is  not  strictly  a  genotoxicity  test;

rather,  it  provides  indirect  evidence  of  cellular  damage
through  oxidative  stress  caused  by  Reactive  Oxygen
Species (ROS). Oxidative stress is a mechanism that may,
in some circumstances, lead to cancer. ROS such as H2O2

are  important  mediators  of  oxidative  stress,  which  are
implicated  in  cancer  and  neurodegenerative
diseases/aging  [103].  ROS  cause  oxidation  of  proteins,
lipids,  RNA,  and  DNA.  When  the  balance  of
reductive/oxidative mediators within the cell leads to the
over-production  of  ROS,  it  may  disrupt  cellular
homeostasis  and  potentially  result  in  DNA  damage.
Importantly,  cancer  cells  elevate  ROS  production  via
oncogenic  mutation,  reduction  in  tumor  suppressor
activation  or  transcription,  increased  metabolism,  and
adaptive changes that allow the tumor to proliferate and
grow  in  a  hypoxic  environment  [104].  In  this  assay,
bioluminescence is produced via activation of the luciferin
precursor, which is directly proportional to the presence
of  hydrogen  peroxide  (H2O2)  in  cells  or  enzymatic
reactions  [105].

2.1.6.2. Advantages and Disadvantages
Disadvantages are, again, that it is a short-term assay

for what may best be described as a chronic process and is
only  an  indirect  or  inferred  measurement  of  effect
(oxidative  stress,  which  may  or  may  not  result  in
mutational events, which may or may not cause cancer).
Advantages  are  that  it  does  not  use  horseradish
peroxidase (HRP), known to produce a high rate of false
positive  results;  it  is  amenable  to  high-throughput
screening  (for  instance,  via  liquid  handling),  and  little
sample  preparation  is  required  [106].  Multiplexing  with
other  fluorescence-based  measures  of  cell  health  is
possible  and  should  be  considered.  Mammalian  2.1.7
HPRT  and  xprt  Assay  (OECD  476)

2.1.7.1. Assay Principle and Applicability
First  adopted  in  1984,  the  Hypoxanthine-guanine

Phosphoribosyltransferase (HPRT) in vitro mammalian cell
gene mutation test is used to detect forward mutations of
the  hypoxanthine-guanine  phosphoribosyl  transferase
gene (HPRT in human cells, Hprt in rodent cells) and the
xanthine-guanine  phosphoribosyl  transferase  transgene
(gpt)  (called  the  XPRT  test)  in  Chinese  Hamster  Ovary
(CHO) or lung (V79) fibroblasts  [107,  108].  The types of
mutations that can be detected are base pair substitutions,
frameshifts, small deletions, and insertions (HPRT), or all
the  foregoing  plus  large  deletions  and  possibly  mitotic
recombination for XPRT, because HPRT is located on the X
chromosome [95, 96, 109-112].

2.1.7.2. Method and Suggested Tips for Success
Cells  in  suspension  are  incubated  with  several  test

concentrations and controls for 3-4 hours ±S9 metabolic
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activation, subcultured for 7-9 days, and then seeded in ±
6-thioguanine  (TG)  containing  medium.  TG  is  cytostatic;
thus, positive mutations will escape and continue to grow
while unmutated cells will not. Cytotoxicity is assessed by
relative  survival  (RS,  ‘cloning  efficiency’)  measured  just
after  treatment,  compared  to  survival  at  the  end  of
treatment and the control. Positive results are determined
as  statistically  significant,  dose-dependent  increases  in
mutant  frequency  above  historical  negative  controls  as
determined by colony counts.

Cell types used are sensitive, stable, have high cloning
efficiency, and a stable spontaneous rate of mutation, and
include CHO, CHL, V79, L5178Y, and TK6 [112, 113] for
HPRT, as well as AS52 cells (which do not contain hprt, for
XPRT). After checking for the presence of contaminating
mycoplasma  and  confirming  the  correct  modal
chromosome  number,  cell  cycle  time,  and  spontaneous
mutant  frequency  should  also  be  verified.  Pre-existing
mutant cells may need to be removed from working stocks
with the use of specific media (i.e., HAT media for HPRT,
MPA media for XPRT).  Specific  cell  lines require careful
adherence to individual requirements and should be used
when growing in the log phase, ensuring optimal cloning
efficiency,  with  at  least  four  test  concentrations  and
controls. Guidelines specify that the spontaneous mutant
frequency generally ranges between 5 and 20 x 10-6, and
that the number of sufficient spontaneous mutants is ≥ 10;
therefore, at least 20 x 106 cells should be treated, and at
least 2 x 106 are to be seeded for mutant selection [114].
During  phenotypic  expression,  cell  subculturing  is
continued to  maintain  log phase growth,  followed by re-
plating  in  TG-selective  medium.  For  those  samples
meeting the laboratory historical control limits of positive
and  negative  controls,  tested  ±S9,  at  appropriate  cell
densities  and  at  concentrations  that  do  not  exceed  the
recommended cytotoxicity or the TG recommendations for
maximum testing concentration, positivity is established if
the  following  criteria  are  met:  1)  at  least  one  tested
concentration  differs  significantly  from  the  negative
control, including being outside of historical control limits;
and 2)  there  is  a  dose  response  as  evaluated by  a  trend
test. A true negative result is established when: 1) none of
the test concentrations are outside of the current negative
control historical limits (differ significantly from negative
controls using the Poisson-based 95% control limit); and 2)
no  dose  response  exists  [108].  Rarely,  equivocal  results
are obtained.

2.1.7.3. Advantages and Disadvantages
Mutation  frequency  increases  in  cells  that  have

escaped  the  requirement  for  6-thioguanine  in  media
treated  with  substances  that  cause  limited  or  small
genetic  damage,  which  may  be  detected  using  Ames  or
large  colony  MLA  tests.  Therefore,  it  is  a  good
confirmatory  assay  for  these  types  of  changes,  and  its
processing efficiency makes it a good screening method.
This  test  can  catch  a  relatively  small  proportion  of
mutation-causing agents not captured by bacterial reverse
mutation or chromosomal aberration testing strategies, as

it  detects  any  mutations,  not  just  specific  ones.  It  can
detect  a  wide  range  of  substances  capable  of  causing
small mutational changes, using human cells or knock-out
cell lines [8, 107].

2.1.8. γH2AX Assay (EURL-ECVAM)

2.1.8.1. Assay Principle and Applicability
γH2AX  is  a  phosphorylated  (Ser-139)  version  of  the

histone  variant  H2AZ.  Formation  of  γH2AX  is  an  early
cellular  response  to  DNA double-strand  break  formation
and  is  considered  an  essential  part  of  the  DNA Damage
Response (DDR) [115]. It is widely recognized as a specific
and  sensitive  marker  of  DNA  damage  from  ionizing
radiation,  ultraviolet  rays,  oxidative  stress,  chemical
agents,  and  certain  drugs  [116].  The  development  of
antibodies  specific  for  the  detection  of  γH2AX  has
produced  an  assay  with  high  specificity.

2.1.8.2. Method and Suggested Tips for Success
Commonly,  the  assay  results  are  measured  by

microscopic  quantitation  of  γH2AX-positive  foci  or  single
cells.  Other  methods  that  are  less  specific  include  flow
cytometry,  which  has  the  disadvantage  of  measuring  only
relative  fluorescence  intensity,  without  regard  to  specific
location  or  origin.  Immunoblotting  or  ELISA,  on  the  other
hand,  only  determines  the  sample’s  total  γH2AX  protein
level, which can also include γH2AX-positive apoptotic cells.
Since these cells are non-viable, they should not be lumped
with  damaged,  but  viable  γH2AX-positive  cells  in  the
quantitation.  Reddig  et  al.  [117],  compares  the
advantages/disadvantages  of  microscopic  γH2AX  foci
quantitation,  automated  fluorescent  microscopy,  flow
cytometry,  and  immunoblotting  in  PBMCs  treated  with
etoposide  for  one  hour.  Their  analysis  revealed  that
automated microscopic γH2AX foci quantitation was the most
sensitive  and  specific,  compared  to  the  Limit  of  Detection
(LoD),  with  immunoblotting  showing  the  highest  LoD.  The
authors concluded that clinical utility could be achieved by
using automated microscopic γH2AX foci quantitation, which
is based on clinical plasma etoposide levels associated with
hematological toxicity and antitumor activity.  An important
limitation  of  the  assay  is  that  when  signal  saturation  is
reached,  individual  foci  are  no  longer  distinguishable  and,
therefore, no longer quantifiable. Detection cannot always be
increased  through  the  use  of  shorter  exposure  times.
Recently,  an  inter-comparison  exercise  was  undertaken  by
the  European  biodosimetry  network  (RENEB)  [118],  which
should help to increase the clinical utility of the assay.

2.1.8.3. Advantages and Disadvantages
Prediscreen, PrediProtect, and PrediRepair are branded

versions of the γH2AX test [119-121], which is recommended
by the European Union Reference Laboratory for alternatives
to  animal  testing  [122].  Claimed  results  are  the  true
detection of 95% of carcinogenic compounds tested, no false
positive  compound  detection  (sensitivity  98%),  and  a
specificity  of  91%.  Kopp  et  al.  [120],  reviewed  27
publications examining 329 chemicals tested using the Ames,
MN, HPRT, and Comet assays and compared those results to
the  ones  obtained  with  their  γH2AX  (Prediscreen)  assay
(referred  to  as  an  ‘in  cell  western  assay’)  and  found  an
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overall  sensitivity  of  60-75%,  specificity  of  87-100%,  and
predictivity  of  79-90%.

2.1.9. Other Assays
Other  currently  used  genetox  assays  include  the  3D

Skin Model (EpiDerm®),  Embryonic Stem Cell Test, drug
uptake  in  vitro,  hepatocyte  proliferation  assay  in  vitro
(mouse, rat, dog, human), Pig-a Assay, and non-disjunction
test  using  FISH  or  antikinetochore.  Co-culture  or  3D
models  have  an  improved  ability  to  detect  secondarily
caused genotoxicity,  such as by the inclusion of  immune
cell  components.  They  are  excellent  for  exploring
mechanisms  of  toxicity,  such  as  using  specifically
engineered or treated cells or those of specific population
backgrounds.

2.1.10.  In  vivo  Pig-a  Gene  Mutation  Assay  (OECD
470)

2.1.10.1. Assay Principle and Applicability
This assay assesses the prevalence of blood cells with

mutant phenotypes through the detection of mutations in
Pig-a  (encodes  a  catalytic  subunit  of  the  N-
acetylglucosamine transferase complex, which synthesizes
Glycosylphosphatidylinositol  (GPI)  cell  surface  anchor
proteins, [123]), and is found only on the X chromosome.
Functionally,  these  mutations  are  an  indicator  of
Paroxysmal  Nocturnal  Hemoglobinuria  (PNH)  affecting
erythrocytes (CD59), granulocytes (CD55), and monocytes
(CD24  [123],).  The  mutation  of  one  locus  on  the  X
chromosome will produce the functional deficit. However,
other  autosomal  gene  products  are  part  of  the  complex;
their  mutation  does  not  produce  the  deficit.  Thus,  while
initially  a  test  specifically  for  paroxysmal  nocturnal
hemoglobinuria,  the  Pig-a  assay  was  suggested  as  a
generalized test  for  gene mutational  capacity  [124,  125]
and later developed by many others. Prototypical mutants
such  as  N-ethyl-N-nitrosourea  (ENU)  and
Dimethylbenzanthracene (DMBA) were investigated using
the  Pig-a  assay  in  both  rats  and  mice  and  found  to  be
positive for both reticulocyte and red blood cell mutations,
and subsequent work clarified that such changes could be
persistent,  develop  in  a  sequence  over  time  reaching  a
maximum and subsequently declining, and be dependent
on  the  dosing  regimen  (frequency  and  timing).  More
information  regarding  dose  additivity  effects  in  specific
agents and in several species was later discovered. Human
cells  from  patients  with  Fanconi  anemia  and  ataxia
telangiectasia were tested and shown to be susceptible to
mutation of Pig-a. Other cells, from individuals with known
DNA mutations or manipulated in vitro to produce specific
mutations,  were  also  susceptible.  Olsen  et  al.  [123]
identified 21 studies using mice and various intentional or
accidental exposures of humans that have been studied for
Pig-a. TK6 cells were found to harbor few PIG-A, but many
PIG-L  mutations.  The  examination  of  the  various
chemicals,  environmental  exposures,  and  hereditary
conditions  and  their  outcomes  using  Pig-a  makes
interesting  reading.

2.1.10.2. Method and Suggested Tips for Success
As  with  the  Ames  assay,  a  chemical  treatment  may

require metabolic activation to exert its mutagenic effects.
Mutations may accumulate over time depending on their
fixation,  but  may  also  be  repaired  over  time.  Therefore,
the  timing  of  measurements  is  key,  as  the  maximum
mutational frequency may occur weeks or longer after the
last exposure. Inter- and intra-individual variation must be
accounted for in the experimental  design.  Other factors,
such  as  dietary  deficiency,  can  and  have  been  shown to
play a role in toxicity [126]. An important consideration is
that  enrichment  by  magnetic  separation  techniques
strongly  affects  detection  capacity,  so  care  should  be
taken not to interpret a negative result as evidence of no
in  vivo  genotoxicity.  In  several  cases  (see  Olsen  et  al.
[123]), no positive Pig-a results were observed, indicating
no effects in the bone marrow; however, positive results
were obtained in the Comet assay for cells from different
organs,  highlighting  differential  organ  sensitivity.  A
similar  outcome  was  seen  after  testing  the  chemicals
dichloropropane  (DCP)  and  dichloromethane  (DCM),
which  target  the  liver,  in  mice.  Neither  assay  was
“wrong,” but together they provided more comprehensive
information.  In  other  cases,  reticulocytes  tested  positive
while  red  blood  cells  (RBCs)  did  not,  interpreted  as  a
protective  effect  in  the  non-treated  (dietary  sufficiency)
group.  A  battery  of  genetox  assays  used  in  concert  is
superior to any single assay alone, and equivocal results
should  be  resolved  through  repeat  testing,  as
demonstrated in nanoparticle testing in mice [127-129]. A
significant  advancement  came  from  measuring  the
mutation rate per cell division, rather than just mutation
frequency,  in  cells  from  Fanconi  anemia  and  ataxia
telangiectasia  patients,  lymphoma  cancer  patients,
transformed myeloid cells, and normal donors [129-132],
revealing  notable  differences  among  these  groups.
Recently,  Dertinger et al.  [133] adapted the PIG-A assay
for  use  with  human  blood  cells,  transitioning  it  from  its
original  rodent  application.  Additionally,  the  assay  was
applied to B-lymphoblastoid TK6 cells  by several  studies
[134-136]. Interestingly, TK6 cells harbor a heterozygous
autosomal deletion of the PIG-L gene on chromosome 17,
alongside the X-linked PIG-A gene. This results in a high
spontaneous mutation rate, necessitating depletion of pre-
existing mutant cells before assay use. It is hypothesized
that  mutations  in  PIG-L  may  detect  clastogenic  events,
while PIG-A mutations primarily identify point mutations.
To  date,  studies  have  shown  positive  results  for
prototypical  mutagens  and  negative  results  for  non-
mutagens, with increased sensitivity compared to the p53-
deficient  WI-L2-NS  cell  line  when  exposed  to
Ethylmethanesulfonate  (EMS)  and  Ultraviolet  C  light
(UVC).  Future  research  will  need  to  determine  whether
other cell types could also serve as effective substrates for
the combined PIG-L/PIG-A assay.

2.1.10.3. Advantages and Disadvantages
The Pig-a assay, which may be performed either as an

in vitro or an in vivo assay, offers advantages over other
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assay types. Very low volumes of peripheral blood samples
are required, allowing animals to be repeatedly sampled
without euthanizing, and flow cytometry detection enables
rapid  quantification.  Human,  rat,  or  mouse cells  may be
used, in cells in culture or from the blood cells of treated
animals.  Immunomagnetic  separation  or  fluorescent-
labelled  aerolysin  reagent  (FLAER)  is  a  variation  on  the
preparation  method  that  depletes  wild-type  cells  and
enriches the pool of either the FLAER-labeled GPI anchors
or the lack of immunostaining of GPI anchor proteins (e.g.,
CD55, CD59), increasing the assay sensitivity by orders of
magnitude. Verification of mutants by DNA sequencing is
required  to  confirm  their  identity  and  quantify  mutant
frequency. New modifications in sequencing have speeded
this process as well.

A  strength  of  the  Pig-a  assay  is  the  ability  to
investigate other basic cell functions, such as the roles of
DNA repair enzymes in base excision repair.

A  caution  is  that  the  kinetics  of  accumulation  and
repair appear to differ between rats, mice, or humans, but
specificity  is  excellent  in  all  three.A disadvantage of  the
Pig-a  assay  is  the  assumption  that  the  compound  or  its
metabolite  reaches  the  bone  marrow  tissue  at  levels
comparable  to  those  in  the  target  organs.  However,
previous  observations  have  shown  that  different  tissues
can  exhibit  varying  responses.  This  limitation  does  not
exist  in  the  comet  or  the  transgenic  mouse  assay.  As
previously stated, a negative Pig-a result does not affirm
the  absence  of  genotoxicity.  Timing,  accumulation,  and
repair of mutations may be crucial. The variations within
and between individuals are important study parameters
that should be considered when planning or interpreting
an experiment.

Tables 1 compares the advantages and disadvantages
of  conventional  and  NAMs  for  short-term  genotoxicity
testing.

Table 1. Comparison of advantages and disadvantages of short-term conventional genetic toxicology assays.

Test name Applicability Endpoint Assay Length Advantages Disadvantages
OECD TG or
regulatory

status
Reference

Ames Assay

Preliminary screening
tool to evaluate the
carcinogenic potential
of chemicals that are
directly acting or
require metabolic
activation
Best used to rank
similar MOA
substances by relative
potency

DNA frameshift
or point
mutations

48 hr incubation
2 or
5 days
(fluctuation
method)

Ease of performance
Cost
Time
Availability of a
library of tested
compound results to
compare
Prevents
unnecessary further
tests
Allows detection of
potentially
carcinogenic
compounds,
preventing wasted
effort

Conflicting results
(false -/false +)
Not directly concordant
with human
carcinogenesis or
mutagenesis
Exogenous S9 required
from the rat
Dependent on cell
culture conditions
Some compounds
untestable
Unsuitable for non-
genotoxic substances
Must establish a proper
concentration range
Complicated test
conditions are required
to get it right

OECD 471
Required under
the Pesticide
Act (US)
Required under
the TSCA (US)

Ames et al.
1973 [9]
Follmann 2013
[154]

MN

Staple guideline test
Best used as part of a
battery of tests to
prevent
misinterpretation of
results

Chromosomal
loss, breakage &
spindle
malformation

72 hr incubation

Sensitive
Can test human
lymphocytes
In vitro italic
Easily scorable

30-40% of compounds
that are (-) in both in
vivo and ToxTracker are
(+) in in vitro MN assay
Question of whether the
toxicant reaches the
target tissue (false -)
Question of excessive
doses (false +)
Maybe detecting ox
stress, not DNA damage

OECD 474, 487
FDA CFSAN
Redbook 2000:
IV.C.1.d (July
2000)

Evans et al.
1979 [39]
Fenech and
Morley 1985,
1986, [40, 44]
Fenech 1999
[46]
Schlegel, et al.
1986 [41]
Heddle 1983
[42]
Countryman,
and Heddle
1976 [43]
Ramalho et al.
1988 [45]
Thomas et al.
2003 [31]
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Test name Applicability Endpoint Assay Length Advantages Disadvantages
OECD TG or
regulatory

status
Reference

In Vitro
Mammalian
Chromosomal
Aberration
Test

Staple guideline test
Chromosome or
Chromatid
damage

If lymphocytes
are used, add 48
hr for mitogenic
stimulation
Exposure for 3-6
hr, followed by
incubation for 1.5
– 2 cell cycles

Simple procedure
and quantitation

Cannot detect
aneugens.
Polyploidy alone does
not distinguish
aneugens and may
indicate cell cycle
perturbation or
cytotoxicity only
Requires metabolic
activation
Requires metaphase
arrest

OECD 473 OECD 2016 [34]

TK6/MLA

Staple guideline test
used since the 1980s
Best used as part of a
battery of tests
Follow-up test after a
positive Ames Assay
result

Broad spectrum
of genotoxic
effects

3-6 hr
or
24 hr without S9
if 3 hr is negative
+ 48 hr culture
time (MLA)
72 hr (TK6)

Heterozygosity of
the TK6 gene makes
it possible to detect
point mutations and
large deletions &
and recombination
Consistent results
Comprehensive, with
other assays (can
detect mutagens
that test negative in
the Ames Assay)

Sensitivity is low for
some applications to
detect direct-acting
agents
Low specificity (MLA)

OECD 490 (July
2016)
Very well
standardized
ICH4

Honma et al.
1999 [93]
OECD 2016 [34]

HPRT

Preliminary screening
assay
Confirmatory assay for
Ames or large colony
MLA

Limited or small
genetic damage
Detects any
mutations

7-8 days +
incubation on
selection medium

Efficient processing
Catches mutations
missed by Ames or
TK6/MLA

Relatively long protocol
Low spontaneous
frequency of mutation
at the HGPRT locus
makes it difficult to
derive enough cells for
quantitation

OECD 476 Johnson 2012
[107]

Comet
Used as part of a test
battery or as a
confirmatory assay

DNA single-
strand breaks
Type and
amount of
damage
Rate of strand
break repair
Alkaline labile
sites

1 - 3 days

Simple to perform
Rapid
Inexpensive
Adaptable
Reproducible
Reliable
Economical
Sensitive

Caution advised in
interpreting results;
intensity of stain is cell
cycle phase dependent
Careful QC required
Cells come from live
organisms
Indirect measure of
DNA damage
Low sensitivity for
oxidative damage,
crosslinks, bulky
adducts

OECD 489

Cook et al. 1976
[79]
Collins 2004
[82]
Karbaschi and Ji
2019 [85]

ROSGlo
Used as part of a test
battery or as a
confirmatory assay

Oxidation of
DNA, RNA,
proteins, and
lipids

Variable
incubation period
with the test
substance.
measurements 2
hr post-reagent
addition

Does not use HRP
(produces false
positive results)
Amenable to HTS
Little sample prep
required
Multiplexing
possible
Simple procedure
Does not require
sample manipulation
Fast
Sensitive

Indirect measure
Short-term assay for
chronic process
Not a standalone test

OECD 442E
OECD 425
OECD 442D

Holmstrom and
Finker 2014
[103]
Promega.com
[105]
Biospace.com
[106]

γH2AX

Clinical use to assess
DNA damage in
biopsies
Used as part of a test
battery or as a
confirmatory assay

DNA double-
strand breaks

~8 hrs
Reaction peaks
from 30 min to 12
hr (depending on
substance and
dose level)

Rapid
Specific (91%)
Sensitive (98%)
HTS is possible, but
with reduced
interpretability
Detects 95% of
carcinogenic
compounds tested

Lack of standardization/
harmonization
Overlapping foci cannot
be quantified, signal
saturation

EURL-ECVAM

Reddig et al.
2018 [117]
Kopp et al. 2019
[120]
Khoury et al.
2013, 2020
[119, 121]
Kirkland et al.
2008 [105]
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Test name Applicability Endpoint Assay Length Advantages Disadvantages
OECD TG or
regulatory

status
Reference

Pig-a

Used as part of a test
battery or as a
confirmatory assay
Monitoring humans
for somatic mutation

Deletions or
mutations in Pig-
a

28 days of
treatment;
detection is
within minutes

Flexible (in vitro or
in vivo)
Low volume of blood
required
Rapid quantification
The mutation rate
per cell division is
also determined
Accurately predicts
mutagens, non-
mutagens
Roles of DNA repair
enzymes in BER and
other cell functions
can be investigated
HTS method

Maximum mutational
frequency may occur
weeks or longer after
the last exposure
Verification of mutants
by DNA sequencing is
required to confirm the
identity and quantify
mutant frequency
The timing of
measurements is key
Differential organ
sensitivity
Negative results should
not be interpreted as
negative results
Does the compound
reach bone marrow?

OECD 470

Araten et al.
1999, 2005,
2010, 2013
[124, 130-132]
Chen et al. 2001
[125]
Olsen et al.
2017 [123]
Dertinger et al.
2015 [13]
Nicklas et al.
2015 [134]
Kruger et al.
2015, 2016
[135, 136]

3. DISCUSSION
The current deficiencies that exist in standard testing

approaches  include  insufficient  physicochemical
characterization  of  some  substances,  a  lack  of
demonstration of cell or tissue uptake and internalization,
and  limitations  in  the  coverage  of  genotoxic  modes  of
action  [137].  As  pointed  out  therein,  current  in  vitro
genotoxicity  test  methods  do  not  evaluate  potential
carcinogenicity caused secondarily through inflammation
(e.g.,  fibrosis, nanomaterial toxicity). Acute in vitro  tests
do  not  have  the  ability  to  correctly  identify  carcinogens
that  act  only  chronically.  Other  studies  [138,  139],  have
pointed out that very little information about the genotoxic
Mechanism of Action (MOA) is found through the assays
individually, and they are resource-intensive and may not
be high-throughput capable. Often, the traditional in vitro
assays are only poorly predictive of human mutagenicity
[138].  The  use  of  numerous  assays  in  an  in  vitro  test
battery  may  require  large  amounts  of  test  chemical.
Although  individual  traditional  assays  are  capable  of  a
high degree of specificity, the overall specificity of the test
battery  may  be  lower.  Recent  efforts  to  address  these
shortcomings  are  discussed  in  previous  studies  [138,
139].The  main  criticism  of  conventional  in  vitro
genotoxicity assays is their tendency to produce excessive
false positive results [140]. Chromosomal damage assays,
in particular, are well known for yielding false positives.
Although test systems have been developed to enhance the
sensitivity  of  in  vitro  assays,  over-prediction  remains  a
concern.  For  example,  a  compound  may  contain  amino
acids  that  promote  the  growth  of  non-mutant  colonies
[141],  flavonoids  known  to  be  mutagenic  in  the  Ames
assay [142], or bacterial nitroreductases may reduce some
nitro  compounds—an  activity  not  present  in  mammalian
cells  [29].  False  positives  can  also  arise  when  repair-
deficient rodent cells are used [122, 143, 144], or due to
differences  between  human  and  non-human  cells  [61],
highlighting  species-specific  variations  in  cellular
responses.  Several  studies  [61,  77]  have  shown that  the
p53  status  of  cells  is  an  important  factor  that  varies  by
species.  Additionally,  some  cell  lines  may  be  subclones

that  have  developed  genomic  instability  or  altered
metabolism and detoxification pathways [145]. Other false
positive  “red  herrings”  have  been  linked  to  cell  culture
conditions  and  propagation  practices,  such  as  pH,
osmolality,  excessive  toxicity,  apoptosis,  or  chelation
effects  [146,  147].  For  drug or  agrichemical  developers,
these false positives can lead to wasted time, effort, and
resources following up on substances that are ultimately
not mutagenic to humans [29, 122, 148, 149]. However, in
the EU, regulations prohibit in vivo re-testing of cosmetic
substances  that  test  positive  in  vitro.  In  all  in  vitro
methods,  quality  control  is  key  to  obtaining  useful  and
meaningful  experimental  results  [150].  The  researcher
should  understand  the  limitations  of  the  method(s)  used
and, first and foremost, have a good grounding in the state
of the art regarding cell culture, which has evolved. They
should  understand  that  replicating  a  cell  over  multiple
passages  degrades  cellular  material  and  introduces
myriad changes that are not usually monitored. Similarly,
working with multiple cell lineages in the same laboratory
carries  risks  of  cross-contamination,  and  each  different
cell  lineage  requires  its  own  growth  conditions  and
specific  monitoring.  The  genetic  identity  of  a  cell  line
should  always  be  ascertained  before  first  use  and  at
intervals  thereafter  to  prevent  uninterpretable  and
meaningless  results.

An important consideration for the Ames Assay and all
other in vitro short-term tests is cytotoxicity. The principle
of  the  test  method  requires  that  the  amount  of  the
substance  producing  mutations  must  not  fall  within  the
range of cytotoxicity. Therefore, a titration for cytotoxicity
of the test substance to the five bacterial strains must be
performed  prior  to  testing,  using  at  least  five  doses
separated by at least ½ log. To avoid excessive toxicity, it
has  been  recommended  to  reduce  the  top  exposure
concentration from 5000 µg/mL to 10 mM or 2000 µg/mL
[81, 108, 151].

For  the  Ames  Assay,  it  seems  obvious,  but  it  is
important that agar not be overlaid while too hot, as it will
kill  microorganisms.  Other  specific  procedural  issues
related to the type or class of compound being tested and
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the bacterial strains being used (including how many and
which ones to use for classes of compounds) are described
in detail in the OECD TG.

Another  important  consideration  is  the  test  result
interpretation  [152].  The  result  of  the  assay  is  always
compared  to  the  control  (reference),  but  the  difference
(increase in mutation frequency) may be slight.

Treatment with increasing exposure concentrations is
informative,  and  a  trend  test  is  typically  performed.  In
some  cases,  the  highest  tested  concentration  may  not
produce  a  statistically  significant  increase  in  mutation
frequency,  but  the  trend  test  may  suggest  that  a  higher
concentration,  if  tested,  would  likely  yield  a  significant
result.  Since  the  upper  concentration  is  limited  by
cytotoxicity, it can be challenging to definitively classify a
result as positive based on established criteria. Therefore,
biological  relevance  should  always  be  considered
alongside statistical thresholds such as p < 0.05 or a ≥2-
fold increase.

The  International  Workshop  on  Genotoxicity  Testing
(IWGT)  recommends  evaluating  results  using  a
combination of three criteria: (1) a dose-related increase
in revertants, (2) a clear increase in revertants at one or
more doses compared to the concurrent negative control,
and  (3)  at  least  one  dose  producing  revertants  above
laboratory-established  historical  control  limits  [152].
These  criteria  can  be  adapted  for  other  conventional
assays  as  well.  Schoeny  et  al.  further  discuss  how  to
establish  a  clear  response  [152].

Good  laboratory  practice,  standardization,  and  strict
adherence to Test  Guideline (TG) methods are essential.
The  TG methods  provide  detailed  instructions,  including
the use of positive and negative controls, vehicle controls,
appropriate  concentration  ranges,  multiple  exposure
levels, and specific bacterial strains. Dertinger et al. [102],
in  a  recent  IWGT  report,  emphasized  the  importance  of
using  historical  control  data  and  proper  methods  for  its
interpretation.

Although  these  requirements  may  complicate  the
execution of the Ames and other conventional assays, over
10,000  substances  have  already  been  tested  using  the
Ames assay. This extensive database is available for use by
others, helping to reduce redundant testing efforts [153].

CONCLUSION
Conventional  short-term  genetic  toxicity  tests  were

described in detail, along with a discussion on how these
tests  can  be  misleading  if  not  carefully  performed  and
interpreted. It must be stressed that one should know the
value of the test being performed and its limits, plus the
mechanism(s) of action of the compound under study, its
physicochemical properties, and the potential confounding
issues before undertaking the assay(s). Finally, it is key to
identifying  a  genotoxic  substance  (and  potentially  a
carcinogen)  to  perform  multiple  assays  to  confirm  its
genotoxicity  and  identify  or  confirm  its  mechanism  of
action. Some assays are far superior for investigating the
mechanism  or  even  the  molecular  initiating  event  of  a

substance,  and  knowing  which  one  to  choose  can  avoid
many problems.

FUTURE DIRECTIONS
Part II of this manuscript will describe and discuss the

following  alternative  testing  approaches  (new  approach
methodologies):  the  in  vitro  yeast  DEL  recombination
assay, 3D cell cultures and the 3D RS Comet assay, the RS
Skin  MN,  Bhas  42  CTA,  ToxTracker™,  TGX-DDI
transcriptomic  biomarker,  Multiflow  DNA  Damage,  and
MutaMouse  FE1  and  PH  assays  for  genetic  toxicity
testing. Part I provides an update on the regulatory status
and  progress  of  alternatives  to  conventional  in  vitro
genetic toxicity methods. A further discussion is included
on the quantitative In Vitro – In Vivo (qIVIVE) approach to
extrapolating  non-whole  organism  results  to  human  risk
assessment,  as  well  as  the  Weight  of  Evidence  (WoE)
approach applicable towards the elimination of the cancer
bioassay requirement for new chemical registration.
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DCM = Dichloromethane
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DDR = DNA Damage Response
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ENU = N-Ethyl-N-Nitrosourea
FACS = Fluorescence-Activated Cell Sorting
FBS = Fetal Bovine Serum
FISH = Fluorescence In Situ Hybridization
FLAER = Fluorescent-Labelled Aerolysin Reagent
GEF = Global Evaluation Factor
Genetox = Genetic Toxicology
GPI = Glycosylphosphatidylinositol
gpt = Xanthine-Guanine Phosphoribosyl

Transferase Transgene
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H2O2 = Hydrogen Peroxide
HPRT = Hypoxanthine-Guanine Phosphoribosyl

Transferase Gene
HRP = Horseradish Peroxidase
IWGT = International Workshop on Genotoxicity

Testing
LNT = ‘Linearity at Low Dose’ Concept
LoD = Limit of Detection
LOH = Loss of Heterozygosity
MF = Mutant Frequency
MLA = Mouse Lymphoma Assay
MN = Micronucleus Test
MNvit = In Vitro Micronucleus Test
MOA = Mechanism of Action
PBMC = Peripheral Blood Mononuclear Cell
PHA = Phytohemagglutinin
PK = Pharmacokinetics
PNH = Paroxysmal Nocturnal Hemoglobinuria
qIVIVE = Quantitative In Vitro – In Vivo Extrapolation
RBC = Red Blood Cell
RI = Replication Index
RICC = Relative Increase in Cell Count
ROS = Reactive Oxygen Species
RPD = Relative Population Doubling
RS = Relative Survival
RTG = Relative Total Growth
SB = Single Strand Breaks
SCGE = Single Cell Gel Electrophoresis
TFT = Trifluorothymidine
TG = 6-Thioguanine
TG = OECD Test Guideline
TK = Toxicokinetics
TK6 = Thymidine Kinase Assay
UVC = Ultraviolet C Light
XPRT = Test Using gpt
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