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Abstract: Various proteins and peptides are able to self assemble into amyloid fibrils that are associated with disease. 
Structural characterisation of these fibres is limited by their insoluble and heterogeneous nature. However, advances in 
various techniques including X-ray diffraction, cryo-electron microscopy and solid state NMR have provided detailed 
information on various amyloid fibrils, from the long range order and macromolecular structure to the atomic interactions 
that promote assembly and stabilise the amyloid core. The cross-  model has been widely accepted as a generic structure 
for most amyloid fibrils and is discussed in detail. It is clear, however, that polymorphisms are present, even in fibrils 
formed from the same precursor protein, and that these may represent differences in packing at a molecular level. To fully 
understand the roles of particular residues in amyloid formation and structure, short peptides can be used in conjunction 
with mutagenesis studies to assess their effects. The structural insights gained using a combination of techniques to study 
both full-length, disease related peptides and short fragments are essential if progress is to be made towards understanding 
why these fibres form and how to prevent their formation. 
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INTRODUCTION 

 The observation of amyloid fibril accumulation in 
different diseases including Alzheimer’s Disease (AD), Type 
II diabetes and Creutzfeldt-Jakob Disease has been well 
established for a number of years, yet our understanding of 
the molecular mechanism of these diseases and the exact 
nature of the pathogenic species remains elusive. Burgeoning 
evidence suggests that small oligomers are responsible for 
toxicity [1-8] but their transient and dynamic nature makes 
them difficult to study. Understanding of the structure of 

amyloid is fundamental if agents are to be designed to 
combat amyloid formation, deposition and toxicity, and most 
progress in the structural characterisation of amyloid has  
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been made on fully formed amyloid fibrils of the type shown 
in Fig. (1). Furthermore, determining how proteins with 
vastly differing amino acid sequences fold (or “misfold”) 
from their native state to form amyloid fibres with very 
similar structures could help unravel the mystery of protein 
folding.  

Defining Amyloid 

 Classically, amyloid is defined by three criteria: the 
appearance of straight, long and unbranching fibrils 

approximately 10 nm in width by electron microscopy (EM) 
(Fig. 1), an apple green colour when viewed under cross 
polarised light after staining with the dye Congo Red and a 
cross-  pattern produced from X-ray fibre diffraction (Fig. 
2). The characteristic cross-  reflections were first seen in X-
ray diffraction patterns produced from the egg-stalk of the 
lacewing Chrysopa [9], and subsequently from amyloid 
obtained from patients with amyloidosis [10]. There are two 

 

Fig. (1). Transmission electron microscopy of amyloid fibrils showing various morphologies. a) A 42 formed in vitro from synthetic peptide 
dissolved in water. b) Fibrils formed from a small peptide (Ac-KFFEAAAKKFFE-NH2) in water. Note the similarity in overall morphology 
between the disease related and designed peptide. c) Microcrystals formed from the peptide GNNQQNY used for single crystal diffraction to 
produce the model in Figs. (3h and 3i). d) Fibrils formed from the peptide KFFEAAAAKFFE in water. e) A higher magnification of image 
d. There is a regular twist that varies in length (e). The width of the fibrils is around 15nm; 2 of these twist around each other.  

Scale bars a-d) = 200 nm, e) =100 nm. 
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notable reflections, a meridional at 4.7-4.8 Å that arises from 
the spacing between hydrogen bonded -strands and an 
equatorial between 10 Å and 11 Å that occurs from the 
distance between the sheets and varies depending on 
which side chains are present (Fig. 2) [11]. This arrangement 
of -strands perpendicular to the fibre axis has been 
observed for many different amyloid forming proteins and 
peptides and suggests a common underlying structure for all 
amyloid fibrils [12]. In addition to these criteria, there are 
other indicators of amyloid presence that include 
fluorescence upon binding the dye Thioflavin T and a peak 
at around 1620 by Fourier transform infrared spectroscopy 
(FTIR) indicating presence of -sheet [13].  

 Alternative models have been suggested to represent 
amyloid structure including the water filled nanotube [14], 
the solenoid or -helix based structures [15-17] and the 
stacking of native structures to form fibrils [18]. In this 
review, we shall concentrate on the cross-  structure as it is 
the most well studied and representative generic structure of 
amyloid to date.  

Structural Characterisation of Amyloid Fibrils 

 The ability of many different proteins to form amyloid 
has led to the search for underlying sequence features that 
may be responsible for fibril formation, and may therefore be 
potential therapeutic targets. Whilst the structural characteri-
sation of amyloid formed from disease related proteins or 
peptides e.g. Amyloid  (A ), Islet amyloid polypeptide 
(IAPP), -synuclein and transthyretin, may be more 
clinically relevant, the fibres formed, in particular from ex-
vivo samples, are often too large and heterogeneous to be 
studied by the available techniques. Analysing data can be 
complicated, so instead short segments of known amyloid 
forming peptides can be used to carry out structural analyses. 

Often these fragments are from disease-related proteins e.g. 
KLVFF from A , and sometimes they are designed e.g. 
KFFEAAAKKFFE [19]. Short sequences such as these 
retain the ability to form amyloid with similar structural 
characteristics to their full-length counterparts and their 
assembled structures can be investigated both experimentally 
and in silico [20-22]. Prediction algorithms have been 
developed that use primary sequence properties to identify 
likely -sheet forming candidates [23-25]. These model 
systems that form amyloid fibres in vitro are much more 
amenable to structural characterisation by biophysical tech-
niques and can provide more detailed information on the 
roles of particular residues. The relevance of results obtained 
on amyloid fibrils in vitro compared to those deposited in 
disease has been supported by FTIR experiments on in vitro 
and ex vivo samples of 2-microglobulin, which both gave 
similar absorbance maxima [26]. 

 The heterogeneous and insoluble nature of amyloid 
fibrils has in most cases precluded them from high-resolution 
structural studies. However, using a combination of tech-
niques it is possible to gain insights into the internal 
substructure of amyloid at an atomic level and determine the 
packing arrangements of particular residues. For example, a 
combination of results from hydrogen deuterium (HD) 
exchange NMR, mutagenesis and solid-state NMR (ssNMR) 
concluded that the 3D structure of A 42 and A 40 amyloid 
fibrils consisted of two -sheets (residues 18-26 and 31-42) 
joined by a -turn [27, 28] (Fig. 3, a-c and d-f). This review 
will focus on our current knowledge of the cross-  structure 
of mature amyloid fibrils and their underlying polymor-
phisms, the various techniques used to gather information 
and how deeper insight can be gained into the atomic 
interactions that appear to contribute to and stabilise the 
amyloid core. 

 

Fig. (2). A schematic of parallel -strands arranged perpendicular to the fibre axis in a cross-  arrangement, the assembly of protofilaments 
into mature fibrils and a classical X-ray fibre diffraction pattern showing the 4.7-4.8 Å meridional and 10-11 Å equatorial reflections that 
define the basic cross-  structure.  
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STRUCTURAL HIERARCHY OF AMYLOID FIBRILS 

Definitions 

 Mature amyloid fibrils of the type discussed in this 
review are thought to assemble in a hierarchical manner and 
consist of laterally associated smaller protofilaments (Fig. 2). 
These protofilaments should not be confused with the 
smaller protofibrils that are seen in the early stages of 
amyloid assembly and are thought to contribute to toxicity. 
Petkova et al. assigned definitions to each level in the 
structural hierarchy of amyloid fibrils that differ somewhat 
from their globular precursors [29]. As there are no -helical 
regions in amyloid core, the secondary structure is limited to 

-strands and other regions e.g. loops or bends. The tertiary 
structure of amyloid is the alignment of -strands into 
parallel or antiparallel -sheets, and the quaternary structure 
is the arrangement of the sheets with respect to each another 
[29]. At least two sheets form the protofilaments that can 
then interact at a higher level to form mature fibres. This 

macromolecular association and overall morphology can be 
affected by solution conditions. 

The Macromolecular Structure of Amyloid 

 Cryo-electron microscopy (Cryo-EM) combined with 
single particle analysis has provided a wealth of information 
on the macromolecular structure of amyloid fibrils and 
transmission electron microscopy produces images in which 
different fibril morphologies are easily observable (Fig. 1). 
In its native state insulin is almost entirely -helical but 
under denaturing conditions was observed to form amyloid 
fibrils composed of 2, 4 and 6 relatively flat protofilaments 
(Table 1) [30]. Using similar methodologies it was shown 
that ex-vivo lysozyme fibrils and fibres formed from an SH3 
domain were composed of 6 and 4 protofilaments 
respectively [31, 32]. Recently, the cryo-electron microscopy 
structure of 2-microglobulin amyloid fibrils has been 
described, showing a complex arrangement of protofilaments 
twisting around one another, formed from globular units [33] 

 

Fig. (3). Some structural models of amyloid fibrils. a) view down the fibre axis, b) side on to the fibre axis and c) at the end of the fibre axis 
of A 40 [69]. Those side chains that interact in the hydrophobic core are shown in green, those that form the hydrophobic face are in yellow, 
residues on the opposite face are in blue and the D23 and K28 residues that from a salt bridge are in grey. d) down, e) side and f) end views 
of A 42 [27]. The residues that are thought to stabilise the core via hydrophobic interactions are in green and the residues that compose the 
salt bridge are in grey (D23 and K28). This structure differs to the structure for A 40 in that the pairings are inter- rather than intra-
molecular. g) The side chain packing from the designed amyloid-forming peptide KFFEAAAKKFFE, of particular note are the interactions 
between Phe residues, likely to be involved in -  stacking [19]. A fragment from the yeast prion protein Sup35, GNNQQNY, as determined 
by X-ray crystallography in form 1, h) and form 2, i), in both forms the sheets interdigitate in the same way in the dry interface (as indicated 
by the black molecules) [65, 66]; the differences lie in the arrangement of molecules in the wet interface. j) The macromolecular structure of 

2-microglobulin fibrils as determined by cryo-EM showing protofilaments twisting around each other [30, 33].  
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(Fig. 3j). Transthyretin amyloid fibrils from patients with 
familial amyloidotic polyneuropathy type I were shown by 
electron microscopy to have cross-sections with a width of 
around 110 Å-130 Å and are composed of four protofila-
ments of around 40 Å-50 Å each [34]. Analysis of the 
images of several fibrils including D67H variant lysozyme, 
Amyloid A protein and immunoglobulin light chain all 
showed an electron lucent core [35]. Cryo-EM analysis on 
A 42 and on A 40 fibrils revealed two protofilaments 
winding around a hollow core [36, 37], a feature that has 
been observed previously in a variety of ex vivo and 
synthetic fibrils [32, 35, 38]. Electron microscopy, magic 
angle spinning NMR and X-ray fibre diffraction on fibrils 
formed from residues 105-115 of transthyretin revealed that 
the protofilaments had an average width of 4.3 nm. Mature 
fibrils were 10.8 nm, the average length of each peptide was 
3.4 nm and the average distance between sheets was 1 nm, 
leading to the conclusion that protofilaments were composed 
of 4 -sheets in a extended conformation and 4 protofila-
ments wind around each other to form the mature fibrils 
[39]. -synuclein fibrils formed either straight (wild type) or 
twisted (residues 30-110) fibrils that in both cases were 
composed of two protofilaments, as determined by solid 
state NMR measurements and cryo-EM [40]. Twisting 
within mature amyloid fibrils is commonly observed [32, 33, 
41]. It is clear that the number of protofilaments involved in 
a mature amyloid fibril and the overall morphology can vary, 
even between fibrils formed from the same precursor protein 
[41, 42].  

Polymorphisms within Amyloid 

 The apparent structural polymorphisms observed in 
fibrils formed from the same precursor protein may be 
generated by changing the in vitro growth conditions, or they 

can occur spontaneously. A 40 was grown both with and 
without agitation and produced fibrils that are structurally 
distinct at the molecular level as determined by ssNMR [43]. 
Similarly, agitated A 40 has been shown to form both flat, 
striated ribbons that show two-fold symmetry [29] and 
twisted morphologies that have three-fold symmetry under 
quiescent conditions with sonication [44]. In both models the 

-sheets are parallel and in register, the -strand and non -
strand regions are very similar and the internal quaternary 
contacts are almost identical. However, the external 
quaternary contacts and overall arrangement of the -strands 
vary to great extent [44]. A fragment from IAPP appears to 
take on two forms determined by solid state NMR, one with 
parallel -strands in the sheet and the other anti-parallel [45]. 
The D23N variant of A 40, known as the Iowa mutation, 
was recently investigated using solid state NMR and found 
to exist in both morphologies with the antiparallel variant 
predominating [46]. This phenomenon of polymorphism 
may be related to the existence of prion strains. There are a 
number of mammalian prion diseases all caused by point 
mutations in the PrP gene, This leads to the conversion of 
normally soluble and -helical PrPc to the -sheet rich 
amyloid forming PrPSc and its subsequent self-propagation 
[47, 48]. Prion strains refer to the different conformations of 
PrPSc that lead to different phenotypes, yet are all encoded 
by the same protein [49]. Characterising structural diffe-
rences between the different prion strains is a challenge. 
However, using a combination of H/D exchange, solution 
NMR and mutagenesis, significant differences were found 
between two strains of the yeast prion Sup35, This work 
showed that in one conformation a larger proportion of the 
sequence is involved in the amyloid core [50]. It is generally 
accepted that the cause of the different disease phenotypes is 
due to the conformational variation and that a similar 

Table 1. Methods Used to Determine Some Amyloid Structures (Shown in Fig. 3) Showing Key Structural Features 
 

Peptide 
Techniques Used to 

Determine Structure 
Key Features Side Chain Contacts Reference 

A  1-40 (a-c) Solid State NMR Parallel, in register  

Residues 1-10 disordered  

Residues 12-24 strand 1  

Residues 25-29 turn  

Residues 30-40 strand 2 

Residues Q15, L17, F19, A21, I31, 
M35, V39 in the same molecule 
interdigitate. A30, I32, L34, V36 and 
V40 form a hydrophobic face. Residues 
H14, K16, F20 are on the opposite face. 
D23 and K28 form a salt bridge. 

Petkova PNAS 
2002 

A 1-42 (d-f) (pdb 
code: 2beg) 

HD exchange NMR 
Mutagenesis 

Parallel, in register  

Residues 1-17 disordered  

Residues 18-26 strand 1 

Residues 27-20 turn  

Residues 31-42 strand 2 

Residues L17, F19 and A21 of strand 1 
on the nth molecule interdigitate with 
I32, L34, V36, G38 and V40 in strand 
2 in the (n-1)th molecule. D23 and K28 
form a salt bridge. 

Luhrs PNAS 
2005 

KFFEAAAKKFFE 
(g) (designed peptide) 

X-ray fibre diffraction 
Electron diffraction 

Antiparallel sheets Pi-stacking (Phe)  

Salt bridges (E and K) 

Makin PNAS 
2005 

GNNQQNY from the 
yeast prion Sup35 (h 
and i) (pdb code: form 
1 1yjp, form 2 2omm) 

X-ray crystallography Parallel, in register 

Class 1 steric zipper; pair of  
sheets with a dry interface 

N2, Q4, N6 interdigitate in the dry 
interface  

Amide stacks (Asn) 
Tyrosine stacks 

Nelson Nature 
2005 

Sawaya Nature 
2007 

Insulin (j) Cryo-EM Long-range interactions between 
protofilaments, helical twisting 

N/A Jimenez PNAS 
2002 
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mechanism may apply to non-infectious amyloid diseases 
[47]. 

THE CROSS-  MODEL FOR AMYLOID 

 The cross-  model as a generic structure for amyloid 
fibrils is historically based upon X-ray fibre diffraction 
patterns that show the meridional and equatorial reflections 
similar to those in Fig. (2). X-ray fibre diffraction carried out 
on synthetic A  gave a typical cross-  pattern [51-54] as did 
experiments on ex vivo fibrils [55]. Other amyloid fibrils 
including FAP type I composed of Met 30 variant of 
transthyretin [56, 57], the amyloidogenic SH3 domain from 
phosphatidylinositol-3’-kinase [32], lysozyme variants [58], 

2-microglobulin [59] and various amyloidogenic fragments 
[58, 60-63] have all also shown a cross-  pattern by X-ray 
diffraction (reviewed in [64]).  

 Information from other sources also provides evidence 
for the cross-  arrangement. A fragment from the yeast prion 
Sup35, GNNQQNY, forms microcrystalline assemblies 
amenable to single crystal diffraction and was the first 
example of amyloid structure determination by this method 
[65]. More recently the Eisenberg group have solved the 
crystal structures of a number of other short amyloidogenic 
sequences. However, peptide length appears to be a 
limitation to this technique, since the peptides that have been 
solved are seven residues or less [66]. Nevertheless a striking 
similarity was observed between all the resulting structures. 
In the the first structure of the GNNQQNY peptide, chains 
were organised within the fibre in a cross-  conformation in 
such a way as to generate a steric zipper with a dry interface 
between sheets and a wet interface between pairs of sheets 
(Fig. 3 h, i and Table 1) [65, 66]. Eight classes of steric 
zipper have been suggested that are thought to account for all 
amyloid structures, although two have not yet been observed. 
Advancements in solid state NMR (ssNMR) have provided a 
high-resolution alternative to X-ray crystallography and the 
technique has been increasingly applied to structural 
determination of amyloid with most results supporting the 
cross-  model. Residues 42-49 of medin, associated with 
aortic medial amyloid, forms microcrystalline needles that 
contain parallel, in register strands with contacts between 
particular residues [60]. Two models have been proposed 
that are consistent with both ssNMR constraints and fibre 
diffraction data that vary in the sheet arrangement [60]. 
Whilst ssNMR can provide structural details at a local level, 
it is not able to give information on long-range contacts 
within the same fibre, although recently a supramolecular 
structure for residues 20-29 of IAPP was deduced by ssNMR 
[67]. In this model the strands are hydrogen-bonded in an 
antiparallel arrangement with the sheets being parallel to one 
another. This contrasts with results from another group that 
suggest that the same fragment assembles into two forms, 
one with parallel and the other with antiparallel  strands 
[45]. There have been more parallel than antiparallel 
structures published so far [62] but this work again 
exemplifies the potential for the same sequences to take on 
different polymorphisms even within the same sample. The 
fibrillar form of a fragment of 2-microglobulin has also 
been investigated using ssNMR, X-ray fibre diffraction and 
atomic force microscopy and was found to contain -strand-
loop- -strand monomers stacked up parallel to each other 

[62]. A model has been proposed for residues 10-35 of A  
from ssNMR, electron microscopy and small angle neutron 
scattering that consists of parallel in-register  strands 
slightly off-set to generate a twist on a macromolecular scale 
that is observed by EM [68]. A 40 did not adopt this same 
extended conformation and formed a structure with a -turn 
with each strand (residues 12-24 and 30-40) stacking up to 
form parallel -sheets (Fig. 3 a-c and Table 1) [69]. Later 
work on the same peptide uncovered that different 
morphologies as viewed by EM and AFM, did not have the 
same molecular structure (as mentioned previously) and 
importantly varied in their toxic effects [43]. A 42 is 
thought to adopt a similar conformation with different 
residues participating in the side-chain interactions (Fig. 3 d-

f and Table 1) [27].  

 Electroparamagnetic resonance (EPR) and site directed 
spin labelling has played a role in determining structural 
features of amyloid, This provides further evidence that 
many fibrils contain a cross-  core. It was found that both 
A 40 and A 42 contained in-register, parallel structures and 
could go some way in locating precise residues that were 
involved in either -strands, turns or loops, or disordered 
regions [70]. Subsequent work on -synuclein fibrils 
suggested that the core region is formed from residues 36 to 
98 but that there are areas within this fragment that are 
disordered, namely at the start of the NAC (non-amyloid 
component) region [71, 72]. Perhaps the most significant 
conclusions from EPR studies on amyloid so far is that an in-
register, parallel arrangement of -strands appears to be the 
most common structural feature of amyloid, giving further 
weight to the proposal that cross-  is a representative 
structure for amyloid [73].  

THE MOLECULAR SUBSTRUCTURE OF AMYLOID 
FIBRILS 

 As many different proteins and peptides are able to fold 
into amyloid fibrils it is clear that fibrillisation is not 
necessarily sequence specific, and it has been proposed that 
the process is driven purely by backbone interactions [74]. 
However, interactions between particular residues appear 
repeatedly in high-resolution structures of amyloid and many 
are thought to play key aggregational or stabilising roles. 
The assembly of protofilaments into fibrils is possibly driven 
by hydrophobic side chains that are exposed on the opposite 
side to the amyloid core. It is conceivable that the non-
specific nature of the hydrophobic interactions between 
protofilaments could be partly responsible for polymor-
phisms within amyloid fibres [29, 62]. The stabilisation 
within the protofilament is thought to arise from side-chain 
interactions. These may be intra-or inter molecular, for 
example salt bridges [43] or -  stacking between aromatic 
residues in different peptide subunits [11, 19, 62, 75]. 
Electron and X-ray diffraction were combined to examine 
the assembled structure of a designed 12-residue peptide 
(KFFEAAAKKFFE). The subsequent analysis revealed a 
model structure in which phenylalanine residues associate 
both between and within the sheets, probably by -stacking 
(Fig. 3g and Table 1) [19]. The stabilising role of aromatic 
residues in amyloid inspired the use of di-phenylalanine in 
nanomaterials with the subunits stacking up to form hollow 
nanotubes that can act as a scaffold for the creation of 
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nanowires [76]. In addition to these intermolecular interac-
tions, the role of asparagine has recently been highlighted in 
the asparagine ladder. These are aligned polar Asn residues 
in the interior of the fibre that hydrogen-bond with each 
other to overcome the energetic disadvantage of being in a 
hydrophobic environment [62, 65, 77]. A poly-glutamine 
peptide (K2Q15D2) formed amyloid-like fibrils [14] and 
analysis of the X-ray diffraction pattern from a mat-textured 
sample gave a cross-  structure in which hydrogen-bonding 
interactions were observed between glutamine side chains 
[78]. 

 Most recent structural work on amyloid has focussed on 
the determination of specific interactions at an atomic level 
and has been aided by technological developments, 
particularly in ssNMR. Research has been carried out into 
both A 40 and A 42 to try and establish exactly which 
residues contribute to both the core stability and aggregation 
propensities of the peptides. The -sheets in the model for 
A 42 are stabilised by side chain interactions between F19 
and G38, A21 and V36 and a salt bridge between D23 and 
K28 (Fig. 3d and Table 1) [27, 28]. Solid state NMR and 
disulphide cross-linking experiments on A 40 revealed 
specific inter- and intra-molecular atomic interactions i.e. 
internal and external quaternary contacts [29, 79]. Several 
hydrophobic residues and a salt bridge stabilise one molecule 
while the presence of glycine at residues 33, 37 and 38 create 
spaces where I31 and M35 fit, known as the external 
contacts (Fig. 3a and Table 1) [29, 69].  

 Short fragments of amyloidogenic proteins that form 
fibres with the same morphological and tinctorial properties 
of the parent peptide, or sequences designed to form 
amyloid, can give detailed insights into the atomic interac-
tions in the amyloid core. Single point mutations reveal the 
roles of individual residues in both the fibrillisation process 
and maintenance of the overall structure. An alanine scan of 
a 14 residue fragment of acetylcholinesterase revealed that 
some residues are essential for amyloid formation, in 
particular aromatic residues [80]. This study also highlighted 
the stabilising role of salt bridges. The K3 fragment from 2-
microglobulin formed fibrils that showed a similar structure 
to the native state i.e. -strand-loop- -strand, but importantly 
residues between Phe 22 and Ser 28 are flipped; in the 
crystal structure of 2-microglobulin in its native state F22, 
N24, Y26 and S28 are on the outside of the structure 
whereas in the fibrils they are located in the hydrophobic 
interior [62]. This arrangement would lead to optimal inter-
molecular packing rather than intramolecular stabilisation 
[62]. Recently two fragments from IAPP, with sequences 
NNFGAIL and SSTNVG, were crystallised and used as a 
basis for a model of IAPP [81]. This work built upon the 
crystal structures that were determined for a number of other 
short peptides and were mentioned previously [65, 66]. 
NNFGAIL did not exhibit the steric zipper structure that was 
proposed as a generic structure for amyloid; instead the 
monomers formed closely packed -sheets that excluded 
water but whose side chains did not interdigitate [81]. 

CONCLUSIONS 

 Whilst there is still some controversy as to the precise 
details of amyloid formation and structure, the combination 

of techniques, both high and low resolution can lead to some 
generic conclusions. There is mounting evidence that the 
cross-  arrangement of -strands is the most common 
structure for amyloid fibrils, although the strands and sheets 
themselves may be parallel or antiparallel. Furthermore, the 
same peptide may form protofilaments with different 
arrangements, and these protofilaments have the ability to 
associate into mature fibres with varying macromolecular 
architectures. There is evidence to suggest that these 
differing morphologies are due to differences on an atomic 
scale and it has been suggested that in a similar fashion to 
prion strains, these different conformations could influence 
their pathologies. Understanding of the individual details  
for each of the amyloid forming proteins is significant 
challenge. Rules have been established by using short 
sequences to identify those residues, or combination of 
residues that have an increased propensity to form amyloid. 
Further investigation and development in techniques will 
provide knowledge on both the detailed differences and 
underlying structural similarities between amyloid fibrils, 
how they form in the first instance, how their strength and 
stability can be exploited and how they can be targeted 
therapeutically in disease.  
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