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Abstract: Approximately one-third of humanity, especially in developing countries, is infected with parasitic 
roundworms or flatworms, collectively known as helminth parasites. These infections cause severe diseases, delayed 
physical development and mortality. A person in helminth endemic areas may be infected with these parasites all his life. 
These parasitic infections coincide with many other infectious diseases, such as malaria, tuberculosis and HIV. Treatment 
of these parasitic infections is relatively easy. In some cases a single dose of anti-parasitic treatment suffices. This paper 
briefly reviews the effects that helminthic infections have on other infectious diseases; on chronic non-transmittable 
diseases and discusses the potential benefits that de-worming may have on the overall morbidity and mortality associated 
with these diseases in developing countries, as well as on the effect de-worming may have on vaccination efficacy. We 
conclude that successful mass de-worming is essential for the reduction of the morbidity associated with these infections 
and may be a feasible and affordable means to combat other infectious diseases, such as HIV, malaria and tuberculosis. 
Furthermore, without it, HIV, malaria and TB vaccines may fail to confer protection in helminth endemic areas. 
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INTRODUCTION 

 Helminths are multicellular eukaryotic parasites that 
infect approximately one-third of the world's population and 
are one of the most common infections in poor people living 
in the developing world [1-3]. Some helminthic infections 
also occur in the developed world [4-6]. Helminths belong to 
two major groups of animals, the flatworms or Platyhelmin-
thes (flukes and tapeworms) and the roundworms or 
Nematoda. The most serious helminth infections are acqui-
red in poor tropical and subtropical areas [1], and constitute 
85% of a class of diseases commonly referred to as 
Neglected Tropical Diseases (NTD) [2,7].  
 Many potential helminthic infections are eliminated by 
host defenses; others become established and may persist for 
prolonged periods, even years. In many cases the same indi-
vidual may be infected by more than one parasite [8,9]. 
Although helminthic infections are often asymptomatic, 
severe pathology can occur [1]. The most obvious forms of 
direct damage are those resulting from the blockage of inter-
nal organs or from the effects of pressure exerted by growing 
parasites. In addition, many helminths undergo extensive 
migrations through body tissues, which both damage tissues 
directly and initiate hypersensitivity reactions. Immune-
mediated inflammatory changes occur in the skin, lungs, 
liver, intestine, CNS, and eyes as worms migrate through 
these organs. Some helminthic infections are among the 
major causes of anemia in developing countries, with hook-
worm accounting for up to 73% of the severe iron-deficiency 
anemia in Africa [10,11]. Infection by helminths results also 
in chronic immune activation leading to immune dysregu- 
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lation and immunological unresponsiveness of the host 
[12,13]. We [14-21] and others [22] have postulated that 
these profound immune changes significantly compromise 
the host capacity to cope with other infections, increase its 
susceptibility to infections and undermines the capacity of 
the host to mount effective immune responses to immuno-
gens and vaccines (see below).  
 In many parts of the developing world, but especially in 
sub-Saharan Africa, the geographic overlap between helmin-
thic infections, HIV/AIDS, tuberculosis (TB), and malaria is 
extensive [8,13,18,23] (Fig. 1). For example, there are 
several reports showing rates of 25% and higher of helminth 
and HIV-1 co-infections [24-32]. Helminth infections also 
occur in HIV-1 infected tuberculosis patients (e.g. [33]). 
Helminth infections may also overlap with chronic diseases 
such as obesity, cardiovascular disease, allergy, and diabetes.  
 Treatments of helminthic infections are relatively simple. 
Effective treatment and prevention strategies can be deli-
vered for less than US$1 per capita per year [8]. De-worming 
programs, throughout the world, have shown significant 
improvement in childhood growth, physical fitness, cogni-
tion, and hemoglobin and serum ferritin concentrations [8]. 
This year alone, hundreds of millions of the world's poorest 
people will receive a single annual dose of one or more 
drugs to treat their parasitic worm infections [34].  
 This paper briefly reviews the effects that helminthic 
infections have on other infectious diseases and chronic non-
transmittable diseases, and discusses the potential benefits 
and feasibility that treatment of helminthic infections may 
have on the overall morbidity and mortality associated with 
several of the most prevalent infections and diseases in 
developing countries, especially on HIV-1 progression. 
Finally, this paper discusses the plausible effects that hel-
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gulator CTLA-4 that is found in helminth infected indivi-
duals [12,50], raises the threshold for effective T cell acti-
vation [51], and may explain the reduced proliferation, follo-
wing anti-CD3 stimulation, and reduced phosphorylation of 
ERK-1/2, following phorbol myristate acetate (PMA) and 
Ca++-ionophore stimulation, of PBMC obtained from hel-
minth infected immune activated individuals [12,18].  
 Importantly, most of the above described immunological 
impairments, which clearly compromise the capacity of the 
helminth infected individuals to mount effective immune 
responses to pathogens as well as to vaccinations, are rever-
ted almost completely, following eradication of the helmin-
thic infections [13,20,52-55]. 

HELMINTHS AND HIV-1  

 The role of the TH1/TH2 types in the pathogenesis of 
HIV has been studied extensively [56,57]. Though there is 
no general agreement as to the role of these responses in 
every phase of the infection, there are some important 
findings that clearly bear on the response type in different 
stages: i) activated CTL are responsible for the initial clea-
rance of the primary viremia and probably for maintaining 
low viremia during the asymptomatic phase of the infection 
[58-60]; ii) progression of the infection is accompanied by a 
TH1 to TH2 switch, with a reduction in the number of TH1 
clones and an increase in the number of T-helper type 0 
(TH0)/TH2 clones [61-63]; iii) TH1 functions are correlated 
with better survival and slower progression [57,64]; iv) TH0 
cells (non-differentiated cells) or TH2 cloned cells show 
increased susceptibility for HIV infection and replication 
[62]; and v) progression may be correlated to reduction of 
cellular immunity, together with higher permissiveness of 
TH0/TH2 cells to HIV infection [62]. Hence, protection 
from HIV infection may also be associated with an effective 
TH1 cellular defense. The best evidence is found in indivi-
duals that have been exposed to HIV and yet remained HIV 
seronegative while having specific HIV cellular immunity 
[64-70], and HIV seronegative infants born to HIV infected 
mothers and having HIV specific CTL activity [71]. The 
importance of cellular immunity in conferring protection 
from infection has also been shown in several studies of 
protective vaccination to SIV in primates [72-74]. Helminth 
co-infection is associated with increased risk of mother to 
child transmission of HIV, possibly by a mechanism in 
which parasite antigens activates lymphocytes in utero [25]. 
In primates it has been demonstrated that Schistosoma 
infected monkeys required significantly less simian-human 
immunodeficiency virus (SHIV) to get infected with the 
virus in comparison to schistosome non-infected animals 
[75]. 
 We have previously suggested that the chronic immune 
activation and the TH2 immune profile caused by helminthic 
infections are major factors in the pathogenesis of AIDS in 
Africa, which may account for the different behavior of the 
epidemic in Africa- its rapid spread and probably its faster 
progression [14]. Though the issue of faster progression of 
HIV infection in Africa is controversial, and there is a pau-
city of controlled studies on the natural course of HIV in 
Africa [14], there are also studies from other developing 
countries in Asia and the Caribbean, which clearly demons-

trate faster progression of HIV infection in these countries 
[76-79]. Overall, our hypothesis is supported by the follow-
ing observations: i) similar immune activation and dysregu-
lation of peripheral T cell populations has been observed in 
other parts of Africa and in India, where helminthic infec-
tions are endemic [80,81]; ii) the similar distribution and 
mutual enhancement of HIV occurs mostly in the poor popu-
lations where helminthic infections are extremely common 
[82,83]; iii) the chronic immune activation due to helminthic 
infections is associated with increased expression of HIV co-
receptors, both CCR5 and CXCR4, as well as with increased 
susceptibility for HIV infection in vitro [84-87]; iv) plasma 
HIV viral load is higher in people living in Sub-Saharan 
Africa, where helminth infections are extremely prevalent 
[88]; v) faster progression to AIDS has been documented in 
Africa and Asia in areas endemic for helminths [88-91] and 
becomes similar to western rate, once helminthic infections 
are eradicated [92]; and vi) helminthic load (number of eggs 
excreted in the stool) is correlated with increased HIV 
plasma viral load [18]. 
 Based on the above, it is clear that helminthic infections 
may adversely affect HIV-1 susceptibility and disease prog-
ression, thus requiring a means of eradicating the helminthic 
parasites that may affect HIV pathogenesis. Multiple obser-
vational studies suggest possible benefit in reducing plasma 
viral load and increasing CD4 counts in HIV-1 helminth 
coinfected individuals following anti-helminthic treatment 
(Reviewed in [13,20,21,93]. These observational studies 
were strongly supported by three randomized controlled 
trials that evaluated the effects of de-worming on markers of 
HIV-1 disease progression in helminth and HIV-1 co-
infected individuals (Reviewed in [94]). All 3 trials demons-
trated benefit in attenuating or reducing plasma viral load 
and/or increasing CD4 counts. For example, treatment of 
Ascaris lumbricoides with albendazole in HIV-1-coinfected 
adults resulted in an increase of 109 CD4+ cells per µl (p = 
0.003) and a trend for 0.54 log10 lower HIV-1 RNA levels 
(P = 0.09) during 3-month follow-up [95]. Given the high 
prevalence of A. lumbricoides infection worldwide (807 
million infected individuals) and a 4.2 billion population at 
risk [1], de-worming may be an important potential strategy 
to delay HIV-1 progression [95].  

HELMINTHS AND OTHER INFECTIOUS DISEASES 

 Plasmodium infections, which lead to malaria, are consi-
dered the most deadly infections in tropical areas [96]. 
Several studies (reviewed in [97]) show enhanced risk or 
increased incidence of clinical malaria resulting from either 
soil-transmitted helminths or schistosome infections. It has 
been hypothesized that the increased malaria susceptibility 
results from a shift in the host humoral responses from 
malaria-protective, cytophilic humoral antibodies to non-
protective, non-cytophilic subclasses [97]. One of the major 
clinical manifestations of malaria is anemia. In the case of 
hookworm and malaria, it has been shown that anemia from 
hookworm and anemia from malaria can build on each other 
to produce profound reductions in hemoglobin [8]. This 
severe anemia resulting from helminth polyparasitism and 
malaria produces several adverse health consequences 
among pregnant women, children, and individuals with HIV 
[8]. In pregnancy, anemia is a leading contributor to maternal 
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morbidity and mortality; it is associated with shock; risk of 
cardiac failure; decreased ability to work, and adverse 
perinatal outcomes. In young children, anemia is associated 
with increased child mortality, and impairments in physical 
growth, cognitive and motor development, and immune fun-
ction. Among individuals with HIV, anemia is an indepen-
dent risk factor for early death. The effect of helminthic 
infections on Plasmodium-specific immune responses is 
controversial and deserves further studies. 
 Tuberculosis is the second major co-infection whose 
prognosis is associated with parasitemia. Like malaria, the 
impact of intestinal helminth infection on Mycobacterium 
tuberculosis (MTB)-specific immune responses during 
active tuberculosis was carefully studied. In a recent study it 
has been found that concomitant intestinal helminth infection 
in patients with newly diagnosed TB skews their cytokine 
profile toward a TH2 response [98], which favors persistent 
MTB infection and a more protracted clinical course of the 
disease. Additionally, in a cohort of HIV-infected Ugandan 
adults, a type 2 cytokine bias and eosinophilia were associa-
ted with progression to active TB [99]. There is some 
evidence that helminth infections, especially hookworm and 
schistosomiasis, adversely affect the outcome of pulmonary 
tuberculosis or the progression to active tuberculosis 
[18,100], and reduce the T cell responses in individuals 
receiving Bacillus Calmette–Guerin (BCG) [101-103]. Ellias 
et al. have shown that chronic worm infection reduces the 
immunogenicity of BCG in humans and this was associated 
with increased TGF-beta production but not with enhanced 
Th2 immune response [104]. However, the data supporting 
this concept is still not conclusive.  

HELMINTHS AND CHRONIC NON-INFECTIOUS 
DISEASES 

 Chronic non-infectious diseases include cardiovascular 
conditions (mainly heart disease and stroke), some cancers, 
chronic respiratory conditions, and type 2 diabetes [105]. 
Together they account for 60% of all deaths worldwide with 
approximately 80% of them occurring in low-income and 
middle-income countries [105]. With this in mind, oxidative 
stress has been implicated as an important pathogenic factor 
in the pathophysiology of various life-threatening diseases 
such as cancer, cardiovascular diseases and diabetes [106]. 
Oxidative stress occurs when the production of free radicals 
overcome the antioxidant defense in the body. Interestingly, 
hydrogen peroxide (H2O2), lipid peroxidation and advanced 
oxidative protein product (AOPP), all markers of oxidative 
stress, were significantly higher in the urine of human 
subjects whose stools were infected with parasites such as 
Blastocystis hominis, Ascaris, Trichuris, hookworm and 
microsporidia, than in non-infected individuals [107]. This 
suggests that the elevated oxidative stress in humans infected 
by intestinal parasites may exasperate the development of 
chronic non-infectious diseases in the parasite infected 
individuals.  
 The etiological role of parasitic infection has been well 
established, through epidemiological studies, for many 
chronic diseases prevalent in the tropics [108]. Examples of 
this include Schistosoma mansoni infection leading to portal 
hypertension; Schistosoma haematobium infection leading to 

obstructive uropathy and squamous cell carcinoma of the 
bladder; Clonorchis sinensis leading to cholangiocarcinoma; 
and Taenia solium infection leading to epilepsy. The 
pathogenesis of these relations is still undefined but offers 
tenuous associations such as schizophrenia with toxoplas-
mosis and link malignancy and epilepsy with a range of 
helminthic infections. S. mansoni infection is of particular 
importance because it is linked to insulin uptake and poten-
tially diabetes. Schistosomes have two insulin receptors 
(SmIR-1 and SmIR-2), which allow insulin to regulate 
glucose uptake [109]. This regulation may have an impact on 
host blood glucose levels and insulin production. Persistent 
S. mansoni infection is also linked to a chronic Th2 response 
which induces severe pathological changes in the gut and 
liver [110].  

DE-WORMING AND VACCINE EFFICACY 

 Protective HIV-1 vaccines are clearly the only realistic 
solution to stop the AIDS epidemic. It is quite accepted by 
the scientific community that a protective HIV vaccine 
should not only generate neutralizing antibodies but also 
potent long-lived TH1 dependant memory CD8+ CTL [74]. 
We have hypothesized that in developing countries chronic 
parasitic infection adds another level of complexity to AIDS 
vaccine development by causing a constant state of immune 
activation characterized by a dominant Th2 type of cytokine 
profile, high IgE levels, and eosinophilia [17,93,111].  
 It may be that the dominant pre-existing TH2 profile 
undermines the ability to generate a TH1 type of response 
and therefore HIV specific cellular immunity [112]. This has 
been clearly shown previously in the study of the murine 
model of Schistosomiasis, where infected animals with a 
preexistent TH2 immune profile were not able to mount CTL 
responses against HIV envelope peptides, while the normal 
non-infected animals could do so [42]. Thus, eradication of 
the helminthic infections may be a prerequisite for effective 
HIV-1 immunization, as we have suggested [17,20,21], or 
that an HIV-1 vaccine should be designed so as to induce 
Th1 dependent immune responses in spite of the preexistent 
TH2 immune background. We demonstrated the capacity to 
generate specific potent TH1 immune responses, including to 
an HIV-1 antigen, in Schistosoma-infected mice with 
preexistent TH2 profile, by the use of potent TH1 inducing 
adjuvants [113,114].  
 Immunomodulation and TH2-biased pre-existing im-
mune profile caused by helminthic infections may also have 
an impact on the host response to mycobacterial vaccination 
[17,18,22,103,104]. The only vaccine available against 
tuberculosis, BCG, so effective in experimental animal 
models, has shown poor results especially in areas of high 
TB incidence with a high prevalence of intestinal helminth 
infections [22]. In a study in which the efficacy BCG 
vaccination was determined after anti-helminthic therapy, 
mycobacterial antigen-specific cytokine responses were 
significantly higher in PBMC obtained from the de-wormed 
studied group. The increased immunogenicity of BCG was 
associated with increased TGF-beta production but not with 
enhanced Th2 immune response. We also have found 
decreased capacity of PBMC obtained from helminth infec-
ted individuals to proliferate following stimulation with 
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Tuberculin purified protein derivative (PPD), a TB specific 
antigen [18]. A sequential follow-up revealed significantly 
higher proliferation of PBMC to PPD in 7 out of 8 examined 
individuals six months after de-worming [18]. In accordance 
with the above, it has been shown that S. mansoni infection 
reduces the protective efficacy of BCG vaccination against 
virulent M. tuberculosis in infected mice [103].  
 In a similar study as above, while mice immunized with a 
malaria vaccine were protected following malaria challenge, 
mice co-infected with a nematode (Heligmosomoides poly-
gyrus) failed to mount a protective immune response [115]. 
The immunized nematode-infected mice produced signifi-
cantly lower levels of malaria-specific antibody than the 
nematode-free mice. Furthermore, de-worming treatment of 
H. polygyrus-infected mice before anti-malarial immuniza-
tion, but not de-worming treatment after anti-malarial 
immunization, restored the protective immunity to malaria 
challenge [115].  

CONCLUSION 

 Helminth infections are endemic in most of the develop-
ing countries, where other infectious diseases, such as AIDS, 
malaria and tuberculosis, are also highly predomi-nant. 
Removing these parasites is, in itself, important so as to 
reduce the mortality and morbidity associated with these 
infections. Furthermore, we suggest that removal of these 
parasites may be important in the context of fighting other 
infectious and non-infectious diseases. This is based on the 
clear understanding and supporting data showing that hel-
minthic infections have profound debilitating effects 
particularly on the immune system of the host, potently 
compromising the host capacity to cope with other infections 
and to mount efficacious immune responses. In addition, it 
may be that without the eradication of helminthic parasites, 
HIV, malaria and TB vaccines would fail to confer protec-
tion in helminth endemic areas, implying that eradication of 
helminthic infections, or modulation of the immune change 
that they cause, should be instituted prior to HIV, malaria 
and TB mass vaccination. Since the public health case for 
de-worming has already been demonstrated by its effec-
tiveness in enhancing the development of children, large-
scale eradication of helminthic infections throughout the 
poor world in the context of the AIDS and tuberculosis 
epidemics is feasible and should be seriously considered and 
implemented, even if the consequences are only probable or 
partially positive. 
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